首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mol CD  Izumi T  Mitra S  Tainer JA 《Nature》2000,403(6768):451-456
Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5' of AP sites to prime DNA repair synthesis. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized beta-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.  相似文献   

2.
碱基切除修复途径是去除氧化和甲基化碱基的最主要途径。在碱基切除修复过程中,多个蛋白质,诸如DNA糖基酶、APE1内切酶、DNA聚合酶beta和DNA连接酶在体内的精密调节下高度协调地作用,从而切除受损碱基,使DNA恢复正常序列。碱基切除修复对维持基因组的稳定及抑制肿瘤发生等生理过程有重要作用。为了进一步从分子水平阐明APE1的作用机制,我们从HeLa细胞的cDNA文库中克隆得到APE1基因,使APE1在大肠杆菌中得到表达,并用蛋白质纯化的快速液相层析法经过一系列层析柱纯化了重组APE1蛋白质,APE1的生物化学功能研究正在进行中。  相似文献   

3.
Garcia V  Phelps SE  Gray S  Neale MJ 《Nature》2011,479(7372):241-244
Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5'-termini to generate 3'-single-strand DNA tails. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 2-4). Mre11 endonuclease activity is critical when DSB termini are blocked by bound protein--such as by the DNA end-joining complex, topoisomerases or the meiotic transesterase Spo11 (refs 7-13)--but a specific function for the Mre11 3'-5' exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5'-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally. Using a combination of physical assays for 5'-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5'-terminus of the DSB--much further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 5'-3' direction away from the DSB, and Mre11 in the 3'-5' direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways.  相似文献   

4.
W N Hunter  T Brown  N N Anand  O Kennard 《Nature》1986,320(6062):552-555
Mutational pathways rely on introducing changes in the DNA double helix. This may be achieved by the incorporation of a noncomplementary base on replication or during genetic recombination, leading to substitution mutation. In vivo studies have shown that most combinations of base-pair mismatches can be accommodated in the DNA double helix, albeit with varying efficiencies. Fidelity of replication requires the recognition and excision of mismatched bases by proofreading enzymes and post-replicative mismatch repair systems. Rates of excision vary with the type of mismatch and there is some evidence that these are influenced by the nature of the neighbouring sequences. However, there is little experimental information about the molecular structure of mismatches and their effect on the DNA double helix. We have recently determined the crystal structures of several DNA fragments with guanine X thymine and adenine X guanine mismatches in a full turn of a B-DNA helix and now report the nature of the base pairing between adenine and cytosine in an isomorphous fragment. The base pair found in the present study is novel and we believe has not previously been demonstrated. Our results suggest that the enzymatic recognition of mismatches is likely to occur at the level of the base pairs and that the efficiency of repair can be correlated with structural features.  相似文献   

5.
Human DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting DNA synthesis past sunlight-induced cyclobutane pyrimidine dimers that escape nucleotide excision repair (NER). Here we have determined the efficiency and fidelity of dimer bypass. We show that Pol eta copies thymine dimers and the flanking bases with higher processivity than it copies undamaged DNA, and then switches to less processive synthesis. This ability of Pol eta to sense the dimer location as synthesis proceeds may facilitate polymerase switching before and after lesion bypass. Pol eta bypasses a dimer with low fidelity and with higher error rates at the 3' thymine than at the 5' thymine. A similar bias is seen with Sulfolobus solfataricus DNA polymerase 4, which forms a Watson-Crick base pair at the 3' thymine of a dimer but a Hoogsteen base pair at the 5' thymine (ref. 3). Ultraviolet-induced mutagenesis is also higher at the 3' base of dipyrimidine sequences. Thus, in normal people and particularly in individuals with NER-defective xeroderma pigmentosum who accumulate dimers, errors made by Pol eta during dimer bypass could contribute to mutagenesis and skin cancer.  相似文献   

6.
BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.  相似文献   

7.
A single double-strand break (DSB) induced by HO endonuclease triggers both repair by homologous recombination and activation of the Mec1-dependent DNA damage checkpoint in budding yeast. Here we report that DNA damage checkpoint activation by a DSB requires the cyclin-dependent kinase CDK1 (Cdc28) in budding yeast. CDK1 is also required for DSB-induced homologous recombination at any cell cycle stage. Inhibition of homologous recombination by using an analogue-sensitive CDK1 protein results in a compensatory increase in non-homologous end joining. CDK1 is required for efficient 5' to 3' resection of DSB ends and for the recruitment of both the single-stranded DNA-binding complex, RPA, and the Rad51 recombination protein. In contrast, Mre11 protein, part of the MRX complex, accumulates at unresected DSB ends. CDK1 is not required when the DNA damage checkpoint is initiated by lesions that are processed by nucleotide excision repair. Maintenance of the DSB-induced checkpoint requires continuing CDK1 activity that ensures continuing end resection. CDK1 is also important for a later step in homologous recombination, after strand invasion and before the initiation of new DNA synthesis.  相似文献   

8.
K K Hamilton  P M Kim  P W Doetsch 《Nature》1992,356(6371):725-728
Cyclobutane pyrimidine dimers (CPDs) are the predominant product of photodamage in DNA after exposure of cells to ultraviolet light and are cytotoxic, mutagenic and carcinogenic in a variety of cellular and animal systems. In prokaryotes, enzymes and protein complexes have been characterized that remove or reverse CPDs in DNA. Micrococcus luteus and T4 phage-infected Escherichia coli contain a specific N-glycosylase/apurinic-apyrimidinic lyase that catalyses a two-step DNA incision process at sites of CPDs, thus initiating base excision repair of these lesions. It is well established that CPDs are recognized and removed from eukaryotic DNA by excision repair processes but very little information exists concerning the nature of the proteins involved in CPD recognition and DNA incision events. We report here that an enzyme functionally similar to the prokaryotic N-glycosylase/apurinic-apyrimidinic lyases exists in Saccharomyces cerevisiae. To our knowledge, this is the first time such an activity has been found in a eukaryote and is also the first example of an organism having both direct reversal and base excision repair pathways for the removal of CPDs from DNA.  相似文献   

9.
10.
Rubinson EH  Gowda AS  Spratt TE  Gold B  Eichman BF 《Nature》2010,468(7322):406-411
DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.  相似文献   

11.
The end-joining reaction catalysed by DNA ligases is required by all organisms and serves as the ultimate step of DNA replication, repair and recombination processes. One of three well characterized mammalian DNA ligases, DNA ligase I, joins Okazaki fragments during DNA replication. Here we report the crystal structure of human DNA ligase I (residues 233 to 919) in complex with a nicked, 5' adenylated DNA intermediate. The structure shows that the enzyme redirects the path of the double helix to expose the nick termini for the strand-joining reaction. It also reveals a unique feature of mammalian ligases: a DNA-binding domain that allows ligase I to encircle its DNA substrate, stabilizes the DNA in a distorted structure, and positions the catalytic core on the nick. Similarities in the toroidal shape and dimensions of DNA ligase I and the proliferating cell nuclear antigen sliding clamp are suggestive of an extensive protein-protein interface that may coordinate the joining of Okazaki fragments.  相似文献   

12.
Sobol RW  Prasad R  Evenski A  Baker A  Yang XP  Horton JK  Wilson SH 《Nature》2000,405(6788):807-810
Small DNA lesions such as oxidized or alkylated bases are repaired by the base excision repair (BER) pathway. BER includes removal of the damaged base by a lesion-specific DNA glycosylase, strand scission by apurinic/apyrimidinic endonuclease, DNA resynthesis and ligation. BER may be further subdivided into DNA beta-polymerase (beta-pol)-dependent single-nucleotide repair and beta-pol-dependent or -independent long patch repair subpathways. Two important enzymatic steps in mammalian single-nucleotide BER are contributed by beta-pol: DNA resynthesis of the repair patch and lyase removal of 5'-deoxyribose phosphate (dRP). Fibroblasts from beta-pol null mice are hypersensitive to mono-functional DNA-methylating agents, resulting in increases in chromosomal damage, apoptosis and necrotic cell death. Here we show that only the dRP lyase activity of beta-pol is required to reverse methylating agent hypersensitivity in beta-pol null cells. These results indicate that removal of the dRP group is a pivotal step in BER in vivo. Persistence of the dRP moiety in DNA results in the hypersensitivity phenotype of beta-pol null cells and may signal downstream events such as apoptosis and necrotic cell death.  相似文献   

13.
K Wiebauer  J Jiricny 《Nature》1989,339(6221):234-236
  相似文献   

14.
Dohoney KM  Gelles J 《Nature》2001,409(6818):370-374
Major pathways of recombinational DNA repair in Escherichia coli require the RecBCD protein--a heterotrimeric, ATP-driven, DNA translocating motor enzyme. RecBCD combines a highly processive and exceptionally fast helicase (DNA-unwinding) activity with a strand-specific nuclease (DNA-cleaving) activity (refs 1, 2 and references therein). Recognition of the DNA sequence 'chi' (5'-GCTGGTGG-3') switches the polarity of DNA cleavage and stimulates recombination at nearby sequences in vivo. Here we attach microscopic polystyrene beads to biotin-tagged RecD protein subunits and use tethered-particle light microscopy to observe translocation of single RecBCD molecules (with a precision of up to approximately 30 nm at 2 Hz) and to examine the mechanism by which chi modifies enzyme activity. Observed translocation is unidirectional, with each molecule moving at a constant velocity corresponding to the population-average DNA unwinding rate. These observations place strong constraints on possible movement mechanisms. Bead release at chi is negligible, showing that the activity modification at chi does not require ejection of the RecD subunit from the enzyme as previously proposed; modification may occur through an unusual, pure conformational switch mechanism.  相似文献   

15.
Zheng X  Pontes O  Zhu J  Miki D  Zhang F  Li WX  Iida K  Kapoor A  Pikaard CS  Zhu JK 《Nature》2008,455(7217):1259-1262
  相似文献   

16.
17.
Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation represents a threat to genome integrity and it is not known how the B cell genome is protected from the mutagenic effects of somatic hypermutation nor how often these protective mechanisms fail. Here we show, by extensive sequencing of murine B cell genes, that the genome is protected by two distinct mechanisms: selective targeting of AID and gene-specific, high-fidelity repair of AID-generated uracils. Numerous genes linked to B cell tumorigenesis, including Myc, Pim1, Pax5, Ocab (also called Pou2af1), H2afx, Rhoh and Ebf1, are deaminated by AID but escape acquisition of most mutations through the combined action of mismatch and base excision repair. However, approximately 25% of expressed genes analysed were not fully protected by either mechanism and accumulated mutations in germinal centre B cells. Our results demonstrate that AID acts broadly on the genome, with the ultimate distribution of mutations determined by a balance between high-fidelity and error-prone DNA repair.  相似文献   

18.
Gao Y  Katyal S  Lee Y  Zhao J  Rehg JE  Russell HR  McKinnon PJ 《Nature》2011,471(7337):240-244
DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.  相似文献   

19.
20.
Bruner SD  Norman DP  Verdine GL 《Nature》2000,403(6772):859-866
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号