首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
亚纯函数涉及分担值的正规定则   总被引:1,自引:0,他引:1  
运用Nevanlinna理论研究了亚纯函数涉及微分多项式与分担值的正规性问题,推广了张庆彩的结果.  相似文献   

2.
研究了亚纯函数族涉及分担值的正规性.主要考虑区域D上亚纯函数族F中每对函数f和g满足f(k)-af-n与g(k)-ag-n分担值b时,F在D内是否正规,其中a和b是两个有穷复数使得a≠0,n和k≥2是两个正整数.两个例子说明本文结果的一些条件是不可去的.  相似文献   

3.
研究了与分担值相关的亚纯函数正规族,设F是在区域D上的亚纯函数族,a是一个非零有限复数,对每一f∈F,f的极点重数至少为k,且满足Ef′(a)=Ef(a)和当f(z)=a时,有f(k)(z)=f(k+1)(z)=a,其中Ef(a)={z∈D:f(z)=a},则F在D上正规。  相似文献   

4.
运用Nevanlinna 值分布理论和正规族理论研究了亚纯函数微分单项式分担一个值的正规族问题, 得到了几个正规定则。  相似文献   

5.
一族亚纯函数的正规定则   总被引:1,自引:0,他引:1  
用简单的方法证明了亚纯函数族的一个正规定则:设F为单位圆盘上的一个亚纯函数族,a为非零有限复数.如果 f∈F,f的零点是重级的,并且f与f′分担a,则F正规.  相似文献   

6.
主要得到了以下结果:设是一族平面区域D内的亚纯函数,a,b为有穷非零复数,k为大于1的整数.如果对于F中的任一元素f,满足f-a的零点重数至少为k,f(z)=a■f(k)(z)=a,f(k)(z)=b■f(k+1)(z)=b,则当k≥3时,F为正规族,k=2并且a/b≠4时,F为正规族.并且给出了1个例子说明条件a/b≠4是必要的.  相似文献   

7.
从分担值集的角度出发,研究了亚纯函数的正规性,推广了前人的结果,得到了关于分担集合的亚纯函数正规性的一个结果。即:设n,6为两个判别的有穷复数,s={a,b},如果{f(κ)}中所有函数,f(κ)在D内以S为IM分担值集。则{f(κ)}在D内正规。  相似文献   

8.
研究了亚纯函数的正规性,改进了文献[1-4]中涉及导数的亚纯函数的正规定则中的部分条件,得到文中定理5.即设F为单位圆盘△上的一族亚纯函数,a,b为任意两个非零有穷复数,k,l为正整数且k>l,若对于任意的f(z)∈F,f(z)的零点重级至少为k+1,极点重级至少为2且f(k)(z)=a(=)f(l)(z)≥b,则F在△上正规.  相似文献   

9.
在亚纯函数及整函数上讨论了{f(z)}和{f(f(z))}的正规族之间的关系,讨论函数及其k阶导数与其正规族之间的联系,得到关于亚纯函数族的一系列正规定则,最后给出了其应用  相似文献   

10.
关于亚纯函数族的几个正规定则   总被引:5,自引:0,他引:5  
本文主要讨论了亚纯函数的分担值与亚纯函数的正规族之间的关系,得到了关于亚纯函数的一些正规定则。  相似文献   

11.
本文中主要运用了Zalcman引理和正规族的相关理论,继续研究了与分担值相关的亚纯函数的正规性问题,得到了与分担值相关的结论:设F是区域D内的亚纯函数族,a,c是非零的有穷复数,b,d是正实数.若对F中任意的函数f,f的零点重级至少是k+1并且有f^(k)=a=〉|f|≥bf=c=〉|f^(k)|≤d,则F在D内正规.  相似文献   

12.
主要研究了亚纯函数分担全纯函数的正规族问题,证明了:如果扩是区域D上的亚纯函数族,且满足L[f]=a0f'+a1f(a0≠O),a,b,c,d为D上的4个全纯函数。如果对任意的f∈£只满足a(z)≠d(z),b(z)+a1(z)a(z)+a0(z)a’(z)≠2c(z),c(z)-a0(z)a’(z)一a1(z)a(z)≠0,f(z)=a(z)→L[f](z)一b(z)且L[f](z)=c(z)→f(z)=d(z),则£在D正规。  相似文献   

13.
正规性是单复变函数中的一个重要研究课题,本文主要研究亚纯函数的正规性问题.运用了Zalcman引理和正规族的相关理论,研究了与分担值相关的亚纯函数的正规性问题,得到了与分担值相关的结论:设F是区域D内的亚纯函数族,a(≠0)与b(≠0)是两个有穷复数,若对F中的任意函数f,有f ′f=af=b,则F在D内正规;设F是区域D内的亚纯函数族,k是一正整数,a(≠0)与b(≠0)是两个有穷复数,若对F中的任意函数f,有f (k)f=af=b和f≠0,则F在D内正规.  相似文献   

14.
分担值与亚纯函数的正规性   总被引:1,自引:0,他引:1  
把亚纯函数的分担值和推广了的球面导数相结合,得到了如下结果:设F是区域D内的亚纯函数族,若F中的任意函数,(∈F)的零点重数至少是k(k是正整数),f=0当且仅当f(k)=0,且当z∈E(1,f(k))时,存在正整数M(<1),使得|f(k)(z)|/1+|f(z)|k+1≤M 则F在D内正规.  相似文献   

15.
研究关于分担值的亚纯函数族的正规性,证明了如下结果:设k,n(≥k+3)是两个正整数,F为单位圆盘Δ内的一族亚纯函数,如果对于每一个f∈F,f的零点重级≥k,且存在仅依赖于f的非零有穷复数bf,cf满足:bf/cf是一个常数;min{σ(0,bf),σ(0,cf),σ(bf,cf)}≥m,这里m0;对于每一对f,g∈F,有f(k)-1/bfn-1fn=cfg(k)-1/bgn-1gn=cg,那么F在Δ内正规.  相似文献   

16.
研究了亚纯函数族的正规性,推广了涉及导数的亚纯函数族的正规定则,得到了涉及微分多项式的亚纯函数正规族的一个结果.即:设F为单位圆盘上的一族亚纯函数,a为任一非零有穷复数,k为一正整数.若对任意的f(z)∈F,f(z)的零点重级至少为k+1,极点重级至少为2,且L(f)(z)和f(z)IM分担a,则F在单位圆盘上正规.  相似文献   

17.
本文利用Zalcman引理,研究了与分担值相关的亚纯函数的正规族,推广并改进了已有的结果,得到了一个正规定则.  相似文献   

18.
证明了亚纯函数的一个正规定则:设F是区域D 内的一族亚纯函数,a≠0,b 是2个有穷复数,m,k,n是3个正整数,且n≥ m+1.如果对任意的f∈F,f的零点重级至少为k+1,且fm+a(f(k))n≠ b,那么F在D 内正规.  相似文献   

19.
主要证明了亚纯函数的正规族和分担值.以及亚纯函数的正规族和分担集合的几个结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号