首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recognition of bacterial glycosphingolipids by natural killer T cells   总被引:1,自引:0,他引:1  
Kinjo Y  Wu D  Kim G  Xing GW  Poles MA  Ho DD  Tsuji M  Kawahara K  Wong CH  Kronenberg M 《Nature》2005,434(7032):520-525
Natural killer T (NKT) cells constitute a highly conserved T lymphocyte subpopulation that has the potential to regulate many types of immune responses through the rapid secretion of cytokines. NKT cells recognize glycolipids presented by CD1d, a class I-like antigen-presenting molecule. They have an invariant T-cell antigen receptor (TCR) alpha-chain, but whether this invariant TCR recognizes microbial antigens is still controversial. Here we show that most mouse and human NKT cells recognize glycosphingolipids from Sphingomonas, Gram-negative bacteria that do not contain lipopolysaccharide. NKT cells are activated in vivo after exposure to these bacterial antigens or bacteria, and mice that lack NKT cells have a marked defect in the clearance of Sphingomonas from the liver. These data suggest that NKT cells are T lymphocytes that provide an innate-type immune response to certain microorganisms through recognition by their antigen receptor, and that they might be useful in providing protection from bacteria that cannot be detected by pattern recognition receptors such as Toll-like receptor 4.  相似文献   

2.
The discovery of innate immune receptors and the emergence of liver immunology (high content of NK and NKT cells in liver) led to the second research summit in innate immunity since the finding of NK cells in the middle 1970s. Liver disease is one of the most dangerous threats to humans, and the progress in innate immunology and liver immunology made it possible to re-explain the cellular and mo- lecular immune mechanisms of liver disease. In the past ten years, we have found that innate recognition of hepatic NK and NKT subsets were involved in murine liver injury. We established a novel NK cell-dependent acute murine hepatitis model by activating Toll-like receptor-3 (TLR-3) with an injection of poly I:C, which may mimic mild viral hepatitis (such as Chronic Hepatitis B). We observed that a network of innate immune cells including NK, NKT and Kupffer cells is involved in liver immune injury in our established NK cell-dependent murine,model. We noted that TLR-3 on Kupffer cells activated by pretreatment with poly I: C might protect against bacterial toxin (LPS)-induced fulminant hepatitis by down-regulating TLR-4 function, while TLR-3 pre-activation of NK cells might reduce Con A-induced NKT cell-mediated fulminant hepatitis by blocking NKT cell recruitment to the liver. We also found that the oversensitivity to injury by immune stimulation in HBV (hepatitis B virus) transgenic mice (full HBV gene-tg or HBs-tg) correlated to the over-expression of Real, an NKG2D (natural killer cell group 2D) ligand of NK cells or CDld, a ligand of TCR-V14 of NKT cells, on HBV+ hepatocytes, which leads to an innate immune response against hepatocytes and is critical in liver immune injury and regeneration.  相似文献   

3.
Gottar M  Gobert V  Michel T  Belvin M  Duyk G  Hoffmann JA  Ferrandon D  Royet J 《Nature》2002,416(6881):640-644
The antimicrobial defence of Drosophila relies largely on the challenge-induced synthesis of an array of potent antimicrobial peptides by the fat body. The defence against Gram-positive bacteria and natural fungal infections is mediated by the Toll signalling pathway, whereas defence against Gram-negative bacteria is dependent on the Immune deficiency (IMD) pathway. Loss-of-function mutations in either pathway reduce the resistance to corresponding infections. The link between microbial infections and activation of these two pathways has remained elusive. The Toll pathway is activated by Gram-positive bacteria through a circulating Peptidoglycan recognition protein (PGRP-SA). PGRPs appear to be highly conserved from insects to mammals, and the Drosophila genome contains 13 members. Here we report a mutation in a gene coding for a putative transmembrane protein, PGRP-LC, which reduces survival to Gram-negative sepsis but has no effect on the response to Gram-positive bacteria or natural fungal infections. By genetic epistasis, we demonstrate that PGRP-LC acts upstream of the imd gene. The data on PGRP-SA with respect to the response to Gram-positive infections, together with the present report, indicate that the PGRP family has a principal role in sensing microbial infections in Drosophila.  相似文献   

4.
TREM-1 amplifies inflammation and is a crucial mediator of septic shock   总被引:66,自引:0,他引:66  
Bouchon A  Facchetti F  Weigand MA  Colonna M 《Nature》2001,410(6832):1103-1107
Host innate responses to bacterial infections are primarily mediated by neutrophils and monocytes/macrophages. These cells express pattern recognition receptors (PRRs) that bind conserved molecular structures shared by groups of microorganisms. Stimulation of PRR signalling pathways initiates secretion of proinflammatory mediators, which promote the elimination of infectious agents and the induction of tissue repair. Excessive inflammation owing to bacterial infections can lead to tissue damage and septic shock. Here we show that inflammatory responses to microbial products are amplified by a pathway mediated by triggering receptor expressed on myeloid cells (TREM)-1. TREM-1 is an activating receptor expressed at high levels on neutrophils and monocytes that infiltrate human tissues infected with bacteria. Furthermore, it is upregulated on peritoneal neutrophils of patients with microbial sepsis and mice with experimental lipopolysaccaride (LPS)-induced shock. Notably, blockade of TREM-1 protects mice against LPS-induced shock, as well as microbial sepsis caused by live Escherichia coli or caecal ligation and puncture. These results demonstrate a critical function of TREM-1 in acute inflammatory responses to bacteria and implicate TREM-1 as a potential therapeutic target for septic shock.  相似文献   

5.
Macrophages orchestrate innate immunity by phagocytosing pathogens and coordinating inflammatory responses. Effective defence requires the host to discriminate between different pathogens. The specificity of innate immune recognition in Drosophila is mediated by the Toll family of receptors; Toll mediates anti-fungal responses, whereas 18-wheeler mediates anti-bacterial defence. A large number of Toll homologues have been identified in mammals, and Toll-like receptor 4 is critical in responses to Gram-negative bacteria. Here we show that Toll-like receptor 2 is recruited specifically to macrophage phagosomes containing yeast, and that a point mutation in the receptor abrogates inflammatory responses to yeast and Gram-positive bacteria, but not to Gram-negative bacteria. Thus, during the phagocytosis of pathogens, two classes of innate immune receptors cooperate to mediate host defence: phagocytic receptors, such as the mannose receptor, signal particle internalization, and the Toll-like receptors sample the contents of the vacuole and trigger an inflammatory response appropriate to defence against the specific organism.  相似文献   

6.
胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae,APP)是引起猪传染性胸膜肺炎疾病的病原菌,APP引起猪致病的毒力因子有多种,其中黏附素作为细菌粘附宿主的第一步中的关键作用被广泛关注.黏附是APP感染宿主的第一步,分泌到革兰氏阴性菌表面的自转运黏附索调节着细菌对宿主细胞的黏附,是重要的...  相似文献   

7.
The recognition and phagocytosis of microbes by macrophages is a principal aspect of innate immunity that is conserved from insects to humans. Drosophila melanogaster has circulating macrophages that phagocytose microbes similarly to mammalian macrophages, suggesting that insect macrophages can be used as a model to study cell-mediated innate immunity. We devised a double-stranded RNA interference-based screen in macrophage-like Drosophila S2 cells, and have defined 34 gene products involved in phagocytosis. These include proteins that participate in haemocyte development, vesicle transport, actin cytoskeleton regulation and a cell surface receptor. This receptor, Peptidoglycan recognition protein LC (PGRP-LC), is involved in phagocytosis of Gram-negative but not Gram-positive bacteria. Drosophila humoral immunity also distinguishes between Gram-negative and Gram-positive bacteria through the Imd and Toll pathways, respectively; however, a receptor for the Imd pathway has not been identified. Here we show that PGRP-LC is important for antibacterial peptide synthesis induced by Escherichia coli both in vitro and in vivo. Furthermore, totem mutants, which fail to express PGRP-LC, are susceptible to Gram-negative (E. coli), but not Gram-positive, bacterial infection. Our results demonstrate that PGRP-LC is an essential component for recognition and signalling of Gram-negative bacteria. Furthermore, this functional genomic approach is likely to have applications beyond phagocytosis.  相似文献   

8.
在病原菌与植物初步接触并企图定植期间,有一系列的识别活动,其中包括物理学和生化识别等.二者的相互关系,将直接影响以后的侵染.在病原真菌侵染过程中,不仅对植物细胞有一个酶解的过程,还有一个物理挤压的过程.后者的应力刺激几乎总是能够引起细胞壁相关的防卫反应,诸如细胞外超氧化物的产生和胼胝质的沉积等.化学信号和力学信号诱导的有机结合才能引发完整的细胞防卫反应.和哺乳动物细胞相似,植物细胞对于力学信号的感知和传导依赖于细胞壁和细胞膜之间的粘附。该粘附是由包含RGD(Arg-Gly-Asp)序列多肽特异介导的,并且该粘附为植物细胞壁相关防卫基因表达所必需.  相似文献   

9.
Bochkov VN  Kadl A  Huber J  Gruber F  Binder BR  Leitinger N 《Nature》2002,419(6902):77-81
Lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, interacts with LPS-binding protein and CD14, which present LPS to toll-like receptor 4 (refs 1, 2), which activates inflammatory gene expression through nuclear factor kappa B (NF kappa B) and mitogen-activated protein-kinase signalling. Antibacterial defence involves activation of neutrophils that generate reactive oxygen species capable of killing bacteria; therefore host lipid peroxidation occurs, initiated by enzymes such as NADPH oxidase and myeloperoxidase. Oxidized phospholipids are pro-inflammatory agonists promoting chronic inflammation in atherosclerosis; however, recent data suggest that they can inhibit expression of inflammatory adhesion molecules. Here we show that oxidized phospholipids inhibit LPS-induced but not tumour-necrosis factor-alpha-induced or interleukin-1 beta-induced NF kappa B-mediated upregulation of inflammatory genes, by blocking the interaction of LPS with LPS-binding protein and CD14. Moreover, in LPS-injected mice, oxidized phospholipids inhibited inflammation and protected mice from lethal endotoxin shock. Thus, in severe Gram-negative bacterial infection, endogenously formed oxidized phospholipids may function as a negative feedback to blunt innate immune responses. Furthermore, identified chemical structures capable of inhibiting the effects of endotoxins such as LPS could be used for the development of new drugs for treatment of sepsis.  相似文献   

10.
Shigella flexneri induces apoptosis in infected macrophages.   总被引:63,自引:0,他引:63  
A Zychlinsky  M C Prevost  P J Sansonetti 《Nature》1992,358(6382):167-169
The Gram-negative bacterial pathogen Shigella flexneri causes dysentery by invading the human colonic mucosa. Bacteria are phagocytosed by enterocytes, escape from the phagosome into the cytoplasm and spread to adjacent cells. After crossing the epithelium, Shigella reaches the lamina propria of intestinal villi, the first line of defence. This tissue is densely populated with phagocytes that are killed in great numbers, resulting in abscesses. The genes required for cell invasion and macrophage killing are located on a 220-kilobase plasmid. We report here on the mechanism of cytotoxicity used by S. flexneri to kill macrophages. Each of four different strains was tested for its capacity to induce cell death. An invasive strain induced programmed cell death (apoptosis), whereas its non-invasive, plasmidcured isogenic strain was not toxic; neither was a mutant in ipa B (ref. 10) (invasion protein antigen), a gene necessary for entry. A non-invasive strain expressing the haemolysin operon of Escherichia coli induced accidental cell death (necrosis), demonstrating that other bacterial cytotoxic mechanisms do not lead to apoptosis. This is the first evidence that an invasive bacterial pathogen can induce suicide in its host cells.  相似文献   

11.
12.
Antibacterial agents specifically inhibiting lipopolysaccharide synthesis   总被引:1,自引:0,他引:1  
R Goldman  W Kohlbrenner  P Lartey  A Pernet 《Nature》1987,329(6135):162-164
The spread of antibiotic resistance in Gram-negative bacteria has sustained a continuing search for new agents with antibacterial activity against this important class of bacterial pathogen. Because the biosynthesis of lipopolysaccharide (LPS) is unique to Gram-negative bacteria and required by them for growth and virulence, attempts have been made to discover or design antibacterial agents acting at this site; however, no such agents have so far been developed. We now present definitive experimental data documenting design of the first member of the class of antibacterial compounds which specifically inhibit LPS synthesis. The target enzyme is 3-deoxy-D-manno-octulosonate cytidylytransferase (CMP-KDO synthetase), a cytoplasmic enzyme which activates 3-deoxy-D-manno-octulosonate (KDO) for incorporation into LPS. A specific inhibitor of CMP-KDO synthetase, alpha-C-(1,5-anhydro-7-amino-2,7-dideoxy-D-manno-heptopyranosyl)-carboxy late was designed using results of our studies of the purified enzyme. LPS synthesis ceased and lipid A precursor accumulated, causing growth stasis and perturbation of outer membrane structure and function, following delivery of the inhibitor to the intracellular target by a peptide carrier. Antibacterial action required an intact oligopeptide permease system and specific intracellular aminopeptidase activity to release inhibitor from the peptide prodrug.  相似文献   

13.
Miyamoto K  Miyake S  Yamamura T 《Nature》2001,413(6855):531-534
Experimental autoimmune encephalomyelitis (EAE) is a prototype autoimmune disease mediated by type 1 helper T (TH1) cells and under the control of regulatory cells. Here we report that a synthetic glycolipid ligand for CD1d-restricted natural killer T (NKT) cells expressing the semi-invariant T-cell receptor (Valpha14+) is preventive against EAE. The ligand is an analogue of alpha-galactosylceramide (alpha-GC), a prototype NKT cell ligand, with a truncated sphingosine chain. alpha-GC causes NKT cells to produce both interferon (IFN)-gamma and interleukin (IL)-4 (refs 4, 5). However, this new ligand can induce a predominant production of IL-4 by the NKT cells. A single injection of this glycolipid, but not of alpha-GC, consistently induced TH2 bias of autoimmune T cells by causing NKT cells to produce IL-4, leading to suppression of EAE. The lack of polymorphism of CD1d and cross-reactive response of mouse and human NKT cells to the same ligand indicates that targeting NKT cells with this ligand may be an attractive means for intervening in human autoimmune diseases such as multiple sclerosis.  相似文献   

14.
CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor   总被引:2,自引:0,他引:2  
The CD1 family is a large cluster of non-polymorphic, major histocompatibility complex (MHC) class-I-like molecules that bind distinct lipid-based antigens that are recognized by T cells. The most studied group of T cells that interact with lipid antigens are natural killer T (NKT) cells, which characteristically express a semi-invariant T-cell receptor (NKT TCR) that specifically recognizes the CD1 family member, CD1d. NKT-cell-mediated recognition of the CD1d-antigen complex has been implicated in microbial immunity, tumour immunity, autoimmunity and allergy. Here we describe the structure of a human NKT TCR in complex with CD1d bound to the potent NKT-cell agonist alpha-galactosylceramide, the archetypal CD1d-restricted glycolipid. In contrast to T-cell receptor-peptide-antigen-MHC complexes, the NKT TCR docked parallel to, and at the extreme end of the CD1d-binding cleft, which enables a lock-and-key type interaction with the lipid antigen. The structure provides a basis for the interaction between the highly conserved NKT TCR alpha-chain and the CD1d-antigen complex that is typified in innate immunity, and also indicates how variability of the NKT TCR beta-chain can impact on recognition of other CD1d-antigen complexes. These findings provide direct insight into how a T-cell receptor recognizes a lipid-antigen-presenting molecule of the immune system.  相似文献   

15.
The human gut is colonized with a wide variety of microorganisms, including species, such as those belonging to the bacterial genus Bifidobacterium, that have beneficial effects on human physiology and pathology. Among the most distinctive benefits of bifidobacteria are modulation of host defence responses and protection against infectious diseases. Nevertheless, the molecular mechanisms underlying these effects have barely been elucidated. To investigate these mechanisms, we used mice associated with certain bifidobacterial strains and a simplified model of lethal infection with enterohaemorrhagic Escherichia coli O157:H7, together with an integrated 'omics' approach. Here we show that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting mice against death induced by E. coli O157:H7. We found that this effect can be attributed, at least in part, to increased production of acetate and that translocation of the E. coli O157:H7 Shiga toxin from the gut lumen to the blood was inhibited. We propose that acetate produced by protective bifidobacteria improves intestinal defence mediated by epithelial cells and thereby protects the host against lethal infection.  相似文献   

16.
Russell AB  Hood RD  Bui NK  LeRoux M  Vollmer W  Mougous JD 《Nature》2011,475(7356):343-347
Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.  相似文献   

17.
Neutrophil elastase targets virulence factors of enterobacteria   总被引:14,自引:0,他引:14  
Shigellae cause bacillary dysentery, a bloody form of diarrhoea that affects almost 200 million people and causes nearly 2 million deaths per year. Shigella invades the colonic mucosa, where it initiates an acute inflammation, rich in neutrophils, that initially contributes to tissue damage and eventually resolves the infection. Neutrophils are phagocytic cells that kill microorganisms but it is unclear how neutrophils control pathogenic bacteria expressing virulence factors that manipulate host cells. In contrast to other cells, neutrophils prevent the escape of Shigella from phagocytic vacuoles in which the bacteria are killed. Here we identify human neutrophil elastase (NE) as a key host defence protein: NE degrades Shigella virulence factors at a 1,000-fold lower concentration than that needed to degrade other bacterial proteins. In neutrophils in which NE is inactivated pharmacologically or genetically, Shigella escapes from phagosomes, increasing bacterial survival. NE also preferentially cleaves virulence factors of Salmonella and Yersinia. These findings establish NE as the first neutrophil factor that targets bacterial virulence proteins.  相似文献   

18.
The mammalian host defence system can be divided broadly into adaptive and non-adaptive immunity. Adaptive immunity is acquired and is mediated by B and T lymphocytes. Non-adaptive immunity is mediated in part by a small subclass of heterogeneous peripheral blood mononuclear cells. This population, termed null cells, consists of haematopoietic precursors and cells mediating natural killer (NK) activity and antibody-dependent cellular cytotoxicity (ADCC). NK cells are a class of non-adherent, non-phagocytic, rapidly cytotoxic lymphocytes which can efficiently lyse a wide variety of tumour cells, virally infected cells and immature cell types of normal origin. Despite the broad range of targets, only a limited number of specificities are thought to be involved in target-cell recognition. Morphologically, NK cells are large granular lymphocytes, but they have been shown to exhibit cell-surface markers characteristic of both T cells and monocytes, raising doubt over their lineage. The recent cloning of the beta-chain of the T-cell antigen receptor has now allowed us to investigate whether some NK cells are T-cell-related. We have examined rearrangement and expression of the beta-chain of the T-cell receptor in cloned murine NK cell lines and fresh murine NK cell populations, and our results support the hypothesis that a subpopulation of NK cells is related to T cells and provide basis for examining whether some NK activity is mediated by a small number of T-cell receptors.  相似文献   

19.
T Michel  J M Reichhart  J A Hoffmann  J Royet 《Nature》2001,414(6865):756-759
Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Sp?tzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Sp?tzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.  相似文献   

20.
Hsu LC  Park JM  Zhang K  Luo JL  Maeda S  Kaufman RJ  Eckmann L  Guiney DG  Karin M 《Nature》2004,428(6980):341-345
Macrophages are pivotal constituents of the innate immune system, vital for recognition and elimination of microbial pathogens. Macrophages use Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns--including bacterial cell wall components, such as lipopolysaccharide or lipoteichoic acid, and viral nucleic acids, such as double-stranded (ds)RNA--and in turn activate effector functions, including anti-apoptotic signalling pathways. Certain pathogens, however, such as Salmonella spp., Shigellae spp. and Yersiniae spp., use specialized virulence factors to overcome these protective responses and induce macrophage apoptosis. We found that the anthrax bacterium, Bacillus anthracis, selectively induces apoptosis of activated macrophages through its lethal toxin, which prevents activation of the anti-apoptotic p38 mitogen-activated protein kinase. We now demonstrate that macrophage apoptosis by three different bacterial pathogens depends on activation of TLR4. Dissection of anti- and pro-apoptotic signalling events triggered by TLR4 identified the dsRNA responsive protein kinase PKR as a critical mediator of pathogen-induced macrophage apoptosis. The pro-apoptotic actions of PKR are mediated both through inhibition of protein synthesis and activation of interferon response factor 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号