首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 7 毫秒
1.
Snaith HA  Sawin KE 《Nature》2003,423(6940):647-651
Microtubules have a central role in eukaryotic cell polarity, in part through interactions between microtubule end-binding proteins and the cell cortex. In the fission yeast Schizosaccharomyces pombe, microtubules and the polarity modulator tea1p maintain cylindrical cell shape and strictly antipodal cell growth. The tea1p protein is transported to cell tips by association with growing microtubule plus ends; once at cell tips, tea1p releases from microtubule ends and associates with the cell cortex, where it coordinates polarized growth. Here we describe a cortical protein, mod5p, that regulates the dynamic behaviour of tea1p. In mod5Delta cells, tea1p is efficiently transported on microtubules to cell tips but fails to anchor properly at the cortex and thus fails to accumulate to normal levels. mod5p contains a signal for carboxy-terminal prenylation and in wild-type cells is associated with the plasma membrane at cell tips. However, in tea1Delta cells, although mod5p remains localized to the plasma membrane, mod5p is no longer restricted to the cell tips. We propose that tea1p and mod5p act in a positive-feedback loop in the microtubule-mediated regulation of cell polarity.  相似文献   

2.
Rauh NR  Schmidt A  Bormann J  Nigg EA  Mayer TU 《Nature》2005,437(7061):1048-1052
Vertebrate eggs awaiting fertilization are arrested at metaphase of meiosis II by a biochemical activity termed cytostatic factor (CSF). This activity inhibits the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that triggers anaphase onset and mitotic/meiotic exit by targeting securin and M-phase cyclins for destruction. On fertilization a transient rise in free intracellular calcium causes release from CSF arrest and thus APC/C activation. Although it has previously been shown that calcium induces the release of APC/C from CSF inhibition through calmodulin-dependent protein kinase II (CaMKII), the relevant substrates of this kinase have not been identified. Recently, we characterized XErp1 (Emi2), an inhibitor of the APC/C and key component of CSF activity in Xenopus egg extract. Here we show that calcium-activated CaMKII triggers exit from meiosis II by sensitizing the APC/C inhibitor XErp1 for polo-like kinase 1 (Plx1)-dependent degradation. Phosphorylation of XErp1 by CaMKII leads to the recruitment of Plx1 that in turn triggers the destruction of XErp1 by phosphorylating a site known to serve as a phosphorylation-dependent degradation signal. These results provide a molecular explanation for how the fertilization-induced calcium increase triggers exit from meiosis II.  相似文献   

3.
A P Mitchell  I Herskowitz 《Nature》1986,319(6056):738-742
  相似文献   

4.
Shirayama M  Tóth A  Gálová M  Nasmyth K 《Nature》1999,402(6758):203-207
Ubiquitin-mediated proteolysis due to the anaphase-promoting complex/cyclosome (APC/C) is essential for separation of sister chromatids, requiring degradation of the anaphase inhibitor Pds1, and for exit from mitosis, requiring inactivation of cyclin B Cdk1 kinases. Exit from mitosis in yeast involves accumulation of the cyclin kinase inhibitor Sic1 as well as cyclin proteolysis mediated by APC/C bound by the activating subunit Cdh1/Hct1 (APC(Cdh1)). Both processes require the Cdc14 phosphatase, whose release from the nucleolus during anaphase causes dephosphorylation and thereby activation of Cdh1 and accumulation of another protein, Sic1 (refs 4-7). We do not know what determines the release of Cdc14 and enables it to promote Cdk1 inactivation, but it is known to be dependent on APC/C bound by Cdc20 (APC(Cdc20)) (ref. 4). Here we show that APC(Cdc20) allows activation of Cdc14 and promotes exit from mitosis by mediating proteolysis of Pds1 and the S phase cyclin Clb5 in the yeast Saccharomyces cerevisiae. Degradation of Pds1 is necessary for release of Cdc14 from the nucleolus, whereas degradation of Clb5 is crucial if Cdc14 is to overwhelm Cdk1 and activate its foes (Cdh1 and Sic1). Remarkably, cells lacking both Pds1 and Clb5 can proliferate in the complete absence of Cdc20.  相似文献   

5.
S L Forsburg  P Nurse 《Nature》1991,351(6323):245-248
In rapidly growing cells of the budding yeast Saccharomyces cerevisiae, the cell cycle is regulated chiefly at Start, just before the G1-S boundary, whereas in the fission yeast Schizosaccharomyces pombe, the cycle is predominantly regulated at G2-M. Both control points are present in both yeasts, and both require the p34cdc2 protein kinase. At G2-M, p34cdc2 kinase activity in S. pombe requires a B-type cyclin in a complex with p34cdc2; this complex is the same as MPF (maturation promoting factor). The p34cdc2 activity at the G1-S transition in S. cerevisiae may be regulated by a similar cyclin complex, using one of the products of a new class of cyclin genes (CLN1, CLN2 and WHI1 (DAF1/CLN3)). At least one is required for progression through the G1-S phase, and deletion of all three leads to G1 arrest. WHI1 was isolated as a dominant allele causing budding yeast cells to divide at a reduced size and was later independently identified as DAF1, a dominant allele of which rendered the cells refractory to the G1-arrest induced by the mating pheromone alpha-factor. The dominant alleles are truncations thought to yield proteins of increased stability, and the cells are accelerated through G1. Without WHI1 function, the cells are hypersensitive to alpha-factor, enlarged and delayed in G1. Heretofore, this G1-class of cyclins has not been identified in other organisms. We have isolated a G1-type cyclin gene called puc1+ from S. pombe, using a functional assay in S. cerevisiae. Expression of puc1+ in S. pombe indicates that it has a cyclin-like role in the fission yeast distinct from the role of the B-type mitotic cyclin.  相似文献   

6.
Ramadan K  Bruderer R  Spiga FM  Popp O  Baur T  Gotta M  Meyer HH 《Nature》2007,450(7173):1258-1262
During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.  相似文献   

7.
8.
RNA degradation is a determining factor in the control of gene expression. The maturation, turnover and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a major exoribonuclease that intervenes in all of these fundamental processes; it can act independently or as a component of the exosome, an essential RNA-degrading multiprotein complex. RNase II-like enzymes are found in all three kingdoms of life, but there are no structural data for any of the proteins of this family. Here we report the X-ray crystallographic structures of both the ligand-free (at 2.44 A resolution) and RNA-bound (at 2.74 A resolution) forms of Escherichia coli RNase II. In contrast to sequence predictions, the structures show that RNase II is organized into four domains: two cold-shock domains, one RNB catalytic domain, which has an unprecedented alphabeta-fold, and one S1 domain. The enzyme establishes contacts with RNA in two distinct regions, the 'anchor' and the 'catalytic' regions, which act synergistically to provide catalysis. The active site is buried within the RNB catalytic domain, in a pocket formed by four conserved sequence motifs. The structure shows that the catalytic pocket is only accessible to single-stranded RNA, and explains the specificity for RNA versus DNA cleavage. It also explains the dynamic mechanism of RNA degradation by providing the structural basis for RNA translocation and enzyme processivity. We propose a reaction mechanism for exonucleolytic RNA degradation involving key conserved residues. Our three-dimensional model corroborates all existing biochemical data for RNase II, and elucidates the general basis for RNA degradation. Moreover, it reveals important structural features that can be extrapolated to other members of this family.  相似文献   

9.
Deg1, a thylakoid lumen-localized protease, retains both chaperone and protease activities. The in vivo function of Deg1 has been shown to be involved not only in PSII assembly but also in the degradation of PSII reaction center protein D1. Here we used the transgenic plants with reduced Deg1 to examine whether the lumen-localized proteins are also the substrates of Deg1 in vivo. Our results showed that the transgenic plants accumulated degradation products of the PsbO protein while the levels of full-length PsbO were not affected. The PsbO degradation products could be efficiently degraded by the recombinant Deg1. These results suggest that Deg1 is involved in the degradation of the PsbO degradation fragments, but not in the initial cleavage event itself.  相似文献   

10.
黑曲霉B1降解氧乐果特性研究   总被引:12,自引:0,他引:12       下载免费PDF全文
从三明农药厂污泥中分离到一株具有较高降解氧乐果活性的真菌,初步鉴定为黑曲霉(Aspergillusniger.).该菌为好氧菌,最佳生长和最佳降解氧乐果的条件相同,均为30℃,pH5.5,可利用氧乐果作为唯一磷源进行生长.在氧乐果与葡萄糖共存的分批培养过程中,黑曲霉B1对葡萄糖与氧乐果的代谢表现为典型的顺序利用特性.黑曲霉B1优先利用葡萄糖为菌体生长的碳源和能源,在葡萄糖浓度降至0.1g L时,黑曲霉B1对氧乐果的降解速率明显增加,培养5d对1g L氧乐果的降解率可达55.75%.  相似文献   

11.
Tomoda K  Kubota Y  Kato J 《Nature》1999,398(6723):160-165
The proliferation of mammalian cells is under strict control, and the cyclin-dependent-kinase inhibitory protein p27Kip1 is an essential participant in this regulation both in vitro and in vivo. Although mutations in p27Kip1 are rarely found in human tumours, reduced expression of the protein correlates well with poor survival among patients with breast or colorectal carcinomas, suggesting that disruption of the p27Kip1 regulatory mechanisms contributes to neoplasia. The abundance of p27Kip1 in the cell is determined either at or after translation, for example as a result of phosphorylation by cyclinE/Cdk2 complexes, degradation by the ubiquitin/proteasome pathway, sequestration by unknown Myc-inducible proteins, binding to cyclinD/Cdk4 complexes, or inactivation by the viral E1A oncoprotein. We have found that a mouse 38K protein (p38) encoded by the Jab1 gene interacts specifically with p27Kip1 and show here that overexpression of p38 in mammalian cells causes the translocation of p27Kip1 from the nucleus to the cytoplasm, decreasing the amount of p27Kip1 in the cell by accelerating its degradation. Ectopic expression of p38 in mouse fibroblasts partially overcomes p27Kip1-mediated arrest in the G1 phase of the cell cycle and markedly reduces their dependence on serum. Our findings indicate that p38 functions as a negative regulator of p27Kip1 by promoting its degradation.  相似文献   

12.
F Uhlmann  F Lottspeich  K Nasmyth 《Nature》1999,400(6739):37-42
Cohesion between sister chromatids is established during DNA replication and depends on a multiprotein complex called cohesin. Attachment of sister kinetochores to the mitotic spindle during mitosis generates forces that would immediately split sister chromatids were it not opposed by cohesion. Cohesion is essential for the alignment of chromosomes in metaphase but must be abolished for sister separation to start during anaphase. In the budding yeast Saccharomyces cerevisiae, loss of sister-chromatid cohesion depends on a separating protein (separin) called Esp1 and is accompanied by dissociation from the chromosomes of the cohesion subunit Scc1. Here we show that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis. A mutant Scc1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociation of Scc1 from chromosomes. The evolutionary conservation of separins indicates that the proteolytic cleavage of cohesion proteins might be a general mechanism for triggering anaphase.  相似文献   

13.
Some filamentous cyanobacteria form heterocysts under conditions lacking combined nitrogen for nitrogen fixation.Photosystem II is removed from heterocyst during the process of cell differentiation.Here,we demonstrate that Alr3815 is a protease that is capable of degrading D1 protein of photosystem II.Strain-322,which lacks alr3815,is impaired in nitrogen fixation in air because some oxygen evolving activity is retained in its heterocysts.Our results also suggest that calcium may play a regulatory role in D1 degradation during heterocyst differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号