首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
A Kääb  E Berthier  C Nuth  J Gardelle  Y Arnaud 《Nature》2012,488(7412):495-498
Glaciers are among the best indicators of terrestrial climate variability, contribute importantly to water resources in many mountainous regions and are a major contributor to global sea level rise. In the Hindu Kush-Karakoram-Himalaya region (HKKH), a paucity of appropriate glacier data has prevented a comprehensive assessment of current regional mass balance. There is, however, indirect evidence of a complex pattern of glacial responses in reaction to heterogeneous climate change signals. Here we use satellite laser altimetry and a global elevation model to show widespread glacier wastage in the eastern, central and south-western parts of the HKKH during 2003-08. Maximal regional thinning rates were 0.66?±?0.09 metres per year in the Jammu-Kashmir region. Conversely, in the Karakoram, glaciers thinned only slightly by a few centimetres per year. Contrary to expectations, regionally averaged thinning rates under debris-mantled ice were similar to those of clean ice despite insulation by debris covers. The 2003-08 specific mass balance for our entire HKKH study region was -0.21?±?0.05?m?yr(-1) water equivalent, significantly less negative than the estimated global average for glaciers and ice caps. This difference is mainly an effect of the balanced glacier mass budget in the Karakoram. The HKKH sea level contribution amounts to one per cent of the present-day sea level rise. Our 2003-08 mass budget of -12.8?±?3.5 gigatonnes (Gt) per year is more negative than recent satellite-gravimetry-based estimates of -5?±?3?Gt?yr(-1) over 2003-10 (ref. 12). For the mountain catchments of the Indus and Ganges basins, the glacier imbalance contributed about 3.5% and about 2.0%, respectively, to the annual average river discharge, and up to 10% for the Upper Indus basin.  相似文献   

2.
Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61?±?7?gigatonnes per year (Gt?yr(-1)) of ice, contributing 0.17?±?0.02 mm?yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31?±?8?Gt?yr(-1) to 92?±?12?Gt?yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64?±?14?Gt?yr(-1) per 1?K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.  相似文献   

3.
By comparing digitized glacier outlines from the Chinese Glacier Inventory (CGI) during the 1960s–1970s and Landsat Enhance Thematic Mapper (ETM+) images from 1999 to 2001, we investigated changes for about 7665 alpine glaciers among 11665 glaciers in seven sub-basins of the Tarim Interior River basin (TIRB). The results showed that the total glacier area was reduced by 3.3% from the 1960s/ 1970s to 1999/2001 and area losses for 1–5 km2 glaciers accounted for 48.3% of the total glacier area loss in the TIRB. However, the glacier area reductions varied from 0.7% to 7.9% among the seven sub-basins of the TIRB during the study period. The glacier area changing with altitude showed that the maximum contribution of area shrinkage occurred at 4900–5400 m. Data from 25 meteorological stations in the TIRB showed increases in both the annual mean air temperature and annual precipitation during 1960–2000. This indicates that the glacier shrinkage in the TIRB over the last 40 years was largely due to regional climate warming that enhanced glacier ablation and overcame the effects of increased precipitation on the glacier mass balance.  相似文献   

4.
Due to climate changes, most of the alpine glaciers have retreated dramatically during the past decades. Thus it is significant to predict the alpine glacier variability in the future for a better understanding of the impact of climate changes on water resource. In this paper, we perform the numerical simulation on Urumqi Glacier No.1 in the eastern Tianshan, central Asia (hereafter Glacier No.1 for short) by considering both the mass balance and ice flow. Given the shape of the Glacier No.1, the velocity of the glacier is obtained by solving a two-dimensional nonlinear Stokes equation and simulated result is in agreement with the observation. In order to predict the variability of Glacier No.1 in the next decades, a climatic scenario is constructed with a temperature rise rate as 0.17°C/10 a and precipitation as constant during the period of 2005-2070. The simulation shows that, the glacier terminus will retreat slowly and the glacier will thin dramatically before 2040, while after year 2040, the glacier terminus retreat will accelerate. This study confirms the increasing retreat rate of alpine glaciers under global warming.  相似文献   

5.
Raper SC  Braithwaite RJ 《Nature》2006,439(7074):311-313
The mean sea level has been projected to rise in the 21st century as a result of global warming. Such projections of sea level change depend on estimated future greenhouse emissions and on differing models, but model-average results from a mid-range scenario (A1B) suggests a 0.387-m rise by 2100 (refs 1, 2). The largest contributions to sea level rise are estimated to come from thermal expansion (0.288 m) and the melting of mountain glaciers and icecaps (0.106 m), with smaller inputs from Greenland (0.024 m) and Antarctica (- 0.074 m). Here we apply a melt model and a geometric volume model to our lower estimate of ice volume and assess the contribution of glaciers to sea level rise, excluding those in Greenland and Antarctica. We provide the first separate assessment of melt contributions from mountain glaciers and icecaps, as well as an improved treatment of volume shrinkage. We find that icecaps melt more slowly than mountain glaciers, whose area declines rapidly in the 21st century, making glaciers a limiting source for ice melt. Using two climate models, we project sea level rise due to melting of mountain glaciers and icecaps to be 0.046 and 0.051 m by 2100, about half that of previous projections.  相似文献   

6.
The maritime glaciers are sensitive to climate change because of high annual precipitation and high air temperature in the region. A combined comprehensive study was carried out based on glacier mass balance observation, GPS-based glacier terminus position survey, glacier Ground Penetrating Radar, topography maps and RS satellite images in the Kangri Karpo Mountains, Southeast Tibet. The study revealed a strong ice mass loss and quick glacier retreat since the 1970s. Ata Glacier, one glacier from the south slope of the Kangri Karpo Mountains, has formed a 6-km-long terminal moraine zone at the end of the glacier since the 1970s, and the accelerating retreat is largely due to the strong glacier surface melting. Mass balance study on the other four glaciers on the northern side of the Kangri Karpo Mountains shows that they are in large negative mass balance and the glaciers had retreated 15--19 m from May 2006 to May 2007. The in-situ glacier observation also shows that the glacier retreat is more obvious in small glaciers. The enhanced ice mass deficit caused by climate warming and the ongoing extinction of many small glaciers in this region could seriously affect the water resources, environ- ments, local climate and regional sustainable development in the near future.  相似文献   

7.
Recent contributions of glaciers and ice caps to sea level rise   总被引:22,自引:0,他引:22  
Jacob T  Wahr J  Pfeffer WT  Swenson S 《Nature》2012,482(7386):514-518
Glaciers and ice caps (GICs) are important contributors to present-day global mean sea level rise. Most previous global mass balance estimates for GICs rely on extrapolation of sparse mass balance measurements representing only a small fraction of the GIC area, leaving their overall contribution to sea level rise unclear. Here we show that GICs, excluding the Greenland and Antarctic peripheral GICs, lost mass at a rate of 148?±?30?Gt?yr(-1) from January 2003 to December 2010, contributing 0.41?±?0.08?mm?yr(-1) to sea level rise. Our results are based on a global, simultaneous inversion of monthly GRACE-derived satellite gravity fields, from which we calculate the mass change over all ice-covered regions greater in area than 100?km(2). The GIC rate for 2003-2010 is about 30 per cent smaller than the previous mass balance estimate that most closely matches our study period. The high mountains of Asia, in particular, show a mass loss of only 4?±?20?Gt?yr(-1) for 2003-2010, compared with 47-55?Gt?yr(-1) in previously published estimates. For completeness, we also estimate that the Greenland and Antarctic ice sheets, including their peripheral GICs, contributed 1.06?±?0.19?mm?yr(-1) to sea level rise over the same time period. The total contribution to sea level rise from all ice-covered regions is thus 1.48?±?0.26?mm?(-1), which agrees well with independent estimates of sea level rise originating from land ice loss and other terrestrial sources.  相似文献   

8.
Acceleration of Greenland ice mass loss in spring 2004   总被引:7,自引:0,他引:7  
Velicogna I  Wahr J 《Nature》2006,443(7109):329-331
In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 +/- 36 km3 yr(-1), equivalent to a global sea level rise of 0.5 +/- 0.1 mm yr(-1). The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland.  相似文献   

9.
帕隆藏布流域位于中国海洋性冰川最为发育的藏东南地区,近年来随着全球温室效应加剧,帕隆藏布流域冰川变化极为显著。采用多期遥感影像,对1994~2015年间帕隆藏布流域波密至然乌段的冰川变化趋势、原因及其影响进行研究。结果表明:(1)20余年间冰川总面积减少了451. 72 km2,各冰川每年大约退缩2. 48%~2. 95%,气温升高以及降雨量减少是导致冰川面积持续退缩的主要原因。(2)由于帕隆藏布江南岸山坡所接收的太阳辐射热量更少,但降水却更加充沛,使得帕隆藏布江南岸冰川分布面积及覆盖率远大于北岸,而冰川退缩速率远小于北岸。(3)冰川的不断退缩使得沟道上游大量冻融松散物源在冰雪融水的外动力条件下,进入沟道形成松散堆积物源,导致流域内大规模发育冰川泥石流。由于帕隆藏布江南岸冰川规模更大,导致帕隆藏布江南岸冰川泥石流更为发育。(4)冰川变化动态监测对冰川泥石流机理分析以及预警研究工作有着重要的参考指导价值。  相似文献   

10.
Mitrovica JX  Tamisiea ME  Davis JL  Milne GA 《Nature》2001,409(6823):1026-1029
Global sea level is an indicator of climate change, as it is sensitive to both thermal expansion of the oceans and a reduction of land-based glaciers. Global sea-level rise has been estimated by correcting observations from tide gauges for glacial isostatic adjustment--the continuing sea-level response due to melting of Late Pleistocene ice--and by computing the global mean of these residual trends. In such analyses, spatial patterns of sea-level rise are assumed to be signals that will average out over geographically distributed tide-gauge data. But a long history of modelling studies has demonstrated that non-uniform--that is, non-eustatic--sea-level redistributions can be produced by variations in the volume of the polar ice sheets. Here we present numerical predictions of gravitationally consistent patterns of sea-level change following variations in either the Antarctic or Greenland ice sheets or the melting of a suite of small mountain glaciers. These predictions are characterized by geometrically distinct patterns that reconcile spatial variations in previously published sea-level records. Under the--albeit coarse--assumption of a globally uniform thermal expansion of the oceans, our approach suggests melting of the Greenland ice complex over the last century equivalent to -0.6 mm yr(-1) of sea-level rise.  相似文献   

11.
冰川速度是冰川学研究中的一个重要参数,遥感方法为获取冰川表面速度提供了一种有效的手段。由于慕士塔格峰地区常年有云覆盖,不能为速度提取提供足够多数量的光学影像。但是,基于SAR影像对偏移量的提取算法为该地区冰川流速的测量提供了一个有效的途径。分别获取两幅雷达影像(ALOS/PALSAR)距离向和方位向的偏移,通过信噪比和相关系数选择可信点,然后通过整体拟合的方法去除雷达图像整体偏移,得到与冰川运动相关的偏移信号,首次得到了慕士塔格峰地区冰川表面完整的速度分布情况,依据该地区的速度大小分布特点,对慕士塔格峰四周冰川进行了划分。并进一步分别分析了该地区冰川在距离向和方位向速度大小与地形的关系,表明速度的大小与地形具有直接的相关性。结果表明,基于SAR影像对的偏移量测量为冰川研究提供了一个有效的方法和手段。  相似文献   

12.
慕士塔格峰冰川变化遥感研究   总被引:7,自引:0,他引:7  
以位于新疆维吾尔族自治区西南部的慕士塔格峰冰川为例,利用研究区1965年经航片校对的地形图和2001年5月的ASTER遥感影像为信息源,通过遥感图像处理技术和专家指导下的人工解译得到1965,2001年两期冰川边界图,用GIS统计该地区冰川面积,并分析冰川变化总趋势.结果表明,近36年来,慕士塔格峰冰川整体呈现退缩趋势,冰川面积减少了1.11%,而山峰西侧和南侧的部分冰川有前进的现象.  相似文献   

13.
Glacier variations and climate warming and drying in the central Himalayas   总被引:24,自引:4,他引:20  
Repeat measurements of glacier terminus positions show that glaciers in the central Himalayas have been in a continuous retreat situation in the past decades. The average retreat rate is 5.5-8.7 m/a in Mt. Qomolangma(Everest) since the 1960s and 6.4 m/a in Mt. Xixiabangma since the 1980s. In recent years, the retreat rate is increasing.Ice core studies revealed that the accumulation rate of glaciers has a fluctuating decrease trend in the last century with a rapid decrease in the 1960s and a relatively steady low value afterwards. Meteorological station record indicates that the annual mean temperature has a slow increase trend but summer temperature had a larger increase in the past 30 a. All these suggest that the glacier retreat results from precipitation decrease in combination with temperature increase,and hence glacier shrinkage in this region will speed up if the climatic warming and drying continues.  相似文献   

14.
The causes and timing of tropical glacier fluctuations during the Holocene epoch (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000?years (11?kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8?±?0.9 to 8.5?±?0.4?kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3?±?0.8 °C cooler at 11?kyr ago and remained -2.1?±?0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics.  相似文献   

15.
Hailuogou Glacier is located in a warm and humid maritime environment. It is large and moves very fast. The bottom of the glacier slides intensively and the temperature at the bottom approaches the pressure melting point. Therefore, there are abundant melting water and debris which act as effective "grinding tools" for glacial abrasion. Polarizing microscope is used to observe the mineral deformation characteristics on the ice-bedrock interface. It is found that feldspar, quartz, hornblende and biotite are exposed to deformation, fracture and chemical alteration to various extents. Bending deformation is common for biotite, due to their lattice characteristics, and the bending orientations are mostly the same as the glacier flow. Bending deformation also occurs in a few hornblendes. High-angle tension fracture and low-angle shear fracture are common for quartz and feldspar, some of them are totally crushed (mylonizations) due to their rigidity. Thus, all the abrasion, quarrying, subglacial water action and subglacial dissolution processes at the bottom of the glacier are verified at the micro-scale level. Mineral deformation and fracture are the basic subglacial erosion mechanisms. The abrasion thickness is 30-90 μm for each time and the average is 50 μm. Most of the debris are silt produced by glacial abrasion. The extent of mineral deformation and fracture decreases drastically downwards beneath the bedrock surface. The estimated erosion rate is about 2.2-11.4 mm/a, which is similar to that of other maritime alpine glaciers, smaller than that of large-scale piedmont glaciers in Alaska (10-30 mm/a), and larger than that of continental glaciers (0.1-1.0 mm/a). The type and size of a glacier are the main factors that influence its erosion rate.  相似文献   

16.
Ren  JiaWen  Ye  BaiSheng  Ding  YongJian  Liu  ShiYin 《科学通报(英文版)》2011,56(16):1661-1664
Recent studies have shown that cryospheric melting is becoming the dominant factor responsible for sea level rise,and that the melt-water from mountain glaciers and ice caps has comprised the majority of the cryospheric contribution since 2003.Analysis of the estimations of cryospheric melt-water and precipitation in glacier regions indicated that the potential contribution of the cryosphere in China is 0.14 to 0.16 mm a–1,of which approximately 0.12 mm a–1 is from glaciers.The contribution of glaciers in the outflow river basins is about 0.07 mm a–1,accounting for 6.4%of the total from global glaciers and ice caps.  相似文献   

17.
Late Pleistocene glaciation of the Changbai Mountains in northeastern China   总被引:6,自引:0,他引:6  
Zhang  Wei  Niu  Yunbo  Yan  Ling  Cui  Zhijiu  Li  ChuanChuan  Mu  Kehua 《科学通报(英文版)》2008,53(17):2672-2684
The Changbai Mountains (2749 m a.s.l.) in northeastern China are one of the typical mountain regions with glaciation since late Pleistocene as evidenced by well-preserved erosive and accumulative landforms at elevations above 2000 m a.s.l, formed by glaciers around the crater lake, Tianchi Lake. Cirque glaciers developed on both the inner and outer sides of the volcanic cone. Well-preserved cirques, glacial trough valleys, glacial threholds, polished surfaces of the glacial erratics and the moraine ridges indicate that several glaciation processes took place during the last glacial period in this region. Resuits of optically stimulated luminescence (OSL) dating on the moraine sediments, and the K/Ar, thermal ionization mass spectrometry (TIMS), electronic spinning resonance (ESR) dating on the volcanic rocks suggest two periods of glacier advances. One is named the Black Wind Mouth glacier advance taking place on the west and north slopes of the volcanic cone at an elevation of 2000-2100 m a.s.l., which is dated to about 20 ka, being the result of the Last Glacial Maximum (LGM). The other is named the Meteorological Station glacier advance at the elevation of 2400-2600 m a.s.l., dated to 11 ka during the late glacial period, and is tentatively correlated to the Younger Dryas stage. The scope of the former glacier advance is larger than that of the latter. Regional comparisons showed that the glacial sequences in the Changbai Mountains are similar to other glaciated areas in eastern Asia during the later part of the last glacial cycle.  相似文献   

18.
Sundal AV  Shepherd A  Nienow P  Hanna E  Palmer S  Huybrechts P 《Nature》2011,469(7331):521-524
Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4?centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62?±?16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.  相似文献   

19.
Ice-sheet acceleration driven by melt supply variability   总被引:2,自引:0,他引:2  
Schoof C 《Nature》2010,468(7325):803-806
Increased ice velocities in Greenland are contributing significantly to eustatic sea level rise. Faster ice flow has been associated with ice-ocean interactions in water-terminating outlet glaciers and with increased surface meltwater supply to the ice-sheet bed inland. Observed correlations between surface melt and ice acceleration have raised the possibility of a positive feedback in which surface melting and accelerated dynamic thinning reinforce one another, suggesting that overall warming could lead to accelerated mass loss. Here I show that it is not simply mean surface melt but an increase in water input variability that drives faster ice flow. Glacier sliding responds to melt indirectly through changes in basal water pressure, with observations showing that water under glaciers drains through channels at low pressure or through interconnected cavities at high pressure. Using a model that captures the dynamic switching between channel and cavity drainage modes, I show that channelization and glacier deceleration rather than acceleration occur above a critical rate of water flow. Higher rates of steady water supply can therefore suppress rather than enhance dynamic thinning, indicating that the melt/dynamic thinning feedback is not universally operational. Short-term increases in water input are, however, accommodated by the drainage system through temporary spikes in water pressure. It is these spikes that lead to ice acceleration, which is therefore driven by strong diurnal melt cycles and an increase in rain and surface lake drainage events rather than an increase in mean melt supply.  相似文献   

20.
Gillespie AR  Montgomery DR  Mushkin A 《Nature》2005,438(7069):E9-10; discussion E10
Head et al. interpret spectacular images from the Mars Express high-resolution stereo camera as evidence of geologically recent rock glaciers in Tharsis and of a piedmont ('hourglass') glacier at the base of a 3-km-high massif east of Hellas. They attribute growth of the low-latitude glaciers to snowfall during periods of increased spin-axis obliquity. The age of the hourglass glacier, considered to be inactive and slowly shrinking beneath a debris cover in the absence of modern snowfall, is estimated to be more than 40 Myr. Although we agree that the maximum glacier extent was climatically controlled, we find evidence in the images to support local augmentation of accumulation from snowfall through a mechanism that does not require climate change on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号