首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumour suppressor p53 induces cellular senescence in response to oncogenic signals. p53 activity is modulated by protein stability and post-translational modification, including phosphorylation and acetylation. The mechanism of p53 activation by oncogenes remains largely unknown. Here we report that the tumour suppressor PML regulates the p53 response to oncogenic signals. We found that oncogenic Ras upregulates PML expression, and overexpression of PML induces senescence in a p53-dependent manner. p53 is acetylated at lysine 382 upon Ras expression, an event that is essential for its biological function. Ras induces re-localization of p53 and the CBP acetyltransferase within the PML nuclear bodies and induces the formation of a trimeric p53-PML-CBP complex. Lastly, Ras-induced p53 acetylation, p53-CBP complex stabilization and senescence are lost in PML-/- fibroblasts. Our data establish a link between PML and p53 and indicate that integrity of the PML bodies is required for p53 acetylation and senescence upon oncogene expression.  相似文献   

2.
Oncogene-induced senescence as an initial barrier in lymphoma development   总被引:2,自引:0,他引:2  
Acute induction of oncogenic Ras provokes cellular senescence involving the retinoblastoma (Rb) pathway, but the tumour suppressive potential of senescence in vivo remains elusive. Recently, Rb-mediated silencing of growth-promoting genes by heterochromatin formation associated with methylation of histone H3 lysine 9 (H3K9me) was identified as a critical feature of cellular senescence, which may depend on the histone methyltransferase Suv39h1. Here we show that Emicro-N-Ras transgenic mice harbouring targeted heterozygous lesions at the Suv39h1, or the p53 locus for comparison, succumb to invasive T-cell lymphomas that lack expression of Suv39h1 or p53, respectively. By contrast, most N-Ras-transgenic wild-type ('control') animals develop a non-lymphoid neoplasia significantly later. Proliferation of primary lymphocytes is directly stalled by a Suv39h1-dependent, H3K9me-related senescent growth arrest in response to oncogenic Ras, thereby cancelling lymphomagenesis at an initial step. Suv39h1-deficient lymphoma cells grow rapidly but, unlike p53-deficient cells, remain highly susceptible to adriamycin-induced apoptosis. In contrast, only control, but not Suv39h1-deficient or p53-deficient, lymphomas senesce after drug therapy when apoptosis is blocked. These results identify H3K9me-mediated senescence as a novel Suv39h1-dependent tumour suppressor mechanism whose inactivation permits the formation of aggressive but apoptosis-competent lymphomas in response to oncogenic Ras.  相似文献   

3.
4.
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.  相似文献   

5.
6.
Tumorigenesis is a multistep process that results from the sequential accumulation of mutations in key oncogene and tumour suppressor pathways. Personalized cancer therapy that is based on targeting these underlying genetic abnormalities presupposes that sustained inactivation of tumour suppressors and activation of oncogenes is essential in advanced cancers. Mutations in the p53 tumour-suppressor pathway are common in human cancer and significant efforts towards pharmaceutical reactivation of defective p53 pathways are underway. Here we show that restoration of p53 in established murine lung tumours leads to significant but incomplete tumour cell loss specifically in malignant adenocarcinomas, but not in adenomas. We define amplification of MAPK signalling as a critical determinant of malignant progression and also a stimulator of Arf tumour-suppressor expression. The response to p53 restoration in this context is critically dependent on the expression of Arf. We propose that p53 not only limits malignant progression by suppressing the acquisition of alterations that lead to tumour progression, but also, in the context of p53 restoration, responds to increased oncogenic signalling to mediate tumour regression. Our observations also underscore that the p53 pathway is not engaged by low levels of oncogene activity that are sufficient for early stages of lung tumour development. These data suggest that restoration of pathways important in tumour progression, as opposed to initiation, may lead to incomplete tumour regression due to the stage-heterogeneity of tumour cell populations.  相似文献   

7.
Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization   总被引:44,自引:0,他引:44  
Li M  Chen D  Shiloh A  Luo J  Nikolaev AY  Qin J  Gu W 《Nature》2002,416(6881):648-653
The p53 tumour suppressor is a short-lived protein that is maintained at low levels in normal cells by Mdm2-mediated ubiquitination and subsequent proteolysis. Stabilization of p53 is crucial for its tumour suppressor function. However, the precise mechanism by which ubiquitinated p53 levels are regulated in vivo is not completely understood. By mass spectrometry of affinity-purified p53-associated factors, we have identified herpesvirus-associated ubiquitin-specific protease (HAUSP) as a novel p53-interacting protein. HAUSP strongly stabilizes p53 even in the presence of excess Mdm2, and also induces p53-dependent cell growth repression and apoptosis. Significantly, HAUSP has an intrinsic enzymatic activity that specifically deubiquitinates p53 both in vitro and in vivo. In contrast, expression of a catalytically inactive point mutant of HAUSP in cells increases the levels of p53 ubiquitination and destabilizes p53. These findings reveal an important mechanism by which p53 can be stabilized by direct deubiquitination and also imply that HAUSP might function as a tumour suppressor in vivo through the stabilization of p53.  相似文献   

8.
Lim KH  Ancrile BB  Kashatus DF  Counter CM 《Nature》2008,452(7187):646-649
Tumour cells become addicted to the expression of initiating oncogenes like Ras, such that loss of oncogene expression in established tumours leads to tumour regression. HRas, NRas or KRas are mutated to remain in the active GTP-bound oncogenic state in many cancers. Although Ras activates several proteins to initiate human tumour growth, only PI3K, through activation of protein kinase B (PKB; also known as AKT), must remain activated by oncogenic Ras to maintain this growth. Here we show that blocking phosphorylation of the AKT substrate, endothelial nitric oxide synthase (eNOS or NOS3), inhibits tumour initiation and maintenance. Moreover, eNOS enhances the nitrosylation and activation of endogenous wild-type Ras proteins, which are required throughout tumorigenesis. We suggest that activation of the PI3K-AKT-eNOS-(wild-type) Ras pathway by oncogenic Ras in cancer cells is required to initiate and maintain tumour growth.  相似文献   

9.
Chromosomal translocations involving the immunoglobulin switch region are a hallmark feature of B-cell malignancies. However, little is known about the molecular mechanism by which primary B cells acquire or guard against these lesions. Here we find that translocations between c-myc and the IgH locus (Igh) are induced in primary B cells within hours of expression of the catalytically active form of activation-induced cytidine deaminase (AID), an enzyme that deaminates cytosine to produce uracil in DNA. Translocation also requires uracil DNA glycosylase (UNG), which removes uracil from DNA to create abasic sites that are then processed to double-strand breaks. The pathway that mediates aberrant joining of c-myc and Igh differs from intrachromosomal repair during immunoglobulin class switch recombination in that it does not require histone H2AX, p53 binding protein 1 (53BP1) or the non-homologous end-joining protein Ku80. In addition, translocations are inhibited by the tumour suppressors ATM, Nbs1, p19 (Arf) and p53, which is consistent with activation of DNA damage- and oncogenic stress-induced checkpoints during physiological class switching. Finally, we demonstrate that accumulation of AID-dependent, IgH-associated chromosomal lesions is not sufficient to enhance c-myc-Igh translocations. Our findings reveal a pathway for surveillance and protection against AID-dependent DNA damage, leading to chromosomal translocations.  相似文献   

10.
P R Yew  A J Berk 《Nature》1992,357(6373):82-85
  相似文献   

11.
12.
Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.  相似文献   

13.
BRAFE600-associated senescence-like cell cycle arrest of human naevi   总被引:3,自引:0,他引:3  
Most normal mammalian cells have a finite lifespan, thought to constitute a protective mechanism against unlimited proliferation. This phenomenon, called senescence, is driven by telomere attrition, which triggers the induction of tumour suppressors including p16(INK4a) (ref. 5). In cultured cells, senescence can be elicited prematurely by oncogenes; however, whether such oncogene-induced senescence represents a physiological process has long been debated. Human naevi (moles) are benign tumours of melanocytes that frequently harbour oncogenic mutations (predominantly V600E, where valine is substituted for glutamic acid) in BRAF, a protein kinase and downstream effector of Ras. Nonetheless, naevi typically remain in a growth-arrested state for decades and only rarely progress into malignancy (melanoma). This raises the question of whether naevi undergo BRAF(V600E)-induced senescence. Here we show that sustained BRAF(V600E) expression in human melanocytes induces cell cycle arrest, which is accompanied by the induction of both p16(INK4a) and senescence-associated acidic beta-galactosidase (SA-beta-Gal) activity, a commonly used senescence marker. Validating these results in vivo, congenital naevi are invariably positive for SA-beta-Gal, demonstrating the presence of this classical senescence-associated marker in a largely growth-arrested, neoplastic human lesion. In growth-arrested melanocytes, both in vitro and in situ, we observed a marked mosaic induction of p16(INK4a), suggesting that factors other than p16(INK4a) contribute to protection against BRAF(V600E)-driven proliferation. Naevi do not appear to suffer from telomere attrition, arguing in favour of an active oncogene-driven senescence process, rather than a loss of replicative potential. Thus, both in vitro and in vivo, BRAF(V600E)-expressing melanocytes display classical hallmarks of senescence, suggesting that oncogene-induced senescence represents a genuine protective physiological process.  相似文献   

14.
Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis.   总被引:39,自引:0,他引:39  
The cyclin-dependent kinase inhibitor p16INK4a can induce senescence of human cells, and its loss by deletion, mutation or epigenetic silencing is among the most frequently observed molecular lesions in human cancer. Overlapping reading frames in the INK4A/ARF gene encode p16INK4a and a distinct tumour-suppressor protein, p19ARF (ref. 3). Here we describe the generation and characterization of a p16Ink4a-specific knockout mouse that retains normal p19Arf function. Mice lacking p16Ink4a were born with the expected mendelian distribution and exhibited normal development except for thymic hyperplasia. T cells deficient in p16Ink4a exhibited enhanced mitogenic responsiveness, consistent with the established role of p16Ink4a in constraining cellular proliferation. In contrast to mouse embryo fibroblasts (MEFs) deficient in p19Arf (ref. 4), p16Ink4a-null MEFs possessed normal growth characteristics and remained susceptible to Ras-induced senescence. Compared with wild-type MEFs, p16Ink4a-null MEFs exhibited an increased rate of immortalization, although this rate was less than that observed previously for cells null for Ink4a/Arf, p19Arf or p53 (refs 4, 5). Furthermore, p16Ink4a deficiency was associated with an increased incidence of spontaneous and carcinogen-induced cancers. These data establish that p16Ink4a, along with p19Arf, functions as a tumour suppressor in mice.  相似文献   

15.
Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.  相似文献   

16.
The tumor suppressor p53 locates at the key point of cell growth or apoptosis balance, and the expression level of p53 is tightly controlled by ubiquitin ligases including MDM2. Upon DNA damage stresses, p53 was accumulated and activated, leading to cell cycle arrest or apoptosis. We previously showed that Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by interacting with and stabilizing MDM2, and consequently enhancing MDM2-mediated ubiquitylation of p53. However, it is unclear how the Smurf1-MDM2 interaction is regulated in response to DNA damage stress. Here, we show that in response to etoposide treatment Smurf1 dissociates from MDM2, resulting in MDM2 destabilization and p53 accumulation. The negative regulation of Smurf1 on apoptosis is released. Notably, this dissociation is a slow process rather than a rapid response, implicating high expression of Smurf1 might confer the resistance against p53 activation. Consistent with this notion, we observed that Smurf1/2 ligases are highly expressed in colon cancer, esophageal squamous cell carcinoma and pancreatic cancer tissues, suggesting the oncogenic tendency of Smurf1/2.  相似文献   

17.
18.
19.
Understanding the molecular underpinnings of cancer is of critical importance to the development of targeted intervention strategies. Identification of such targets, however, is notoriously difficult and unpredictable. Malignant cell transformation requires the cooperation of a few oncogenic mutations that cause substantial reorganization of many cell features and induce complex changes in gene expression patterns. Genes critical to this multifaceted cellular phenotype have therefore only been identified after signalling pathway analysis or on an ad hoc basis. Our observations that cell transformation by cooperating oncogenic lesions depends on synergistic modulation of downstream signalling circuitry suggest that malignant transformation is a highly cooperative process, involving synergy at multiple levels of regulation, including gene expression. Here we show that a large proportion of genes controlled synergistically by loss-of-function p53 and Ras activation are critical to the malignant state of murine and human colon cells. Notably, 14 out of 24 'cooperation response genes' were found to contribute to tumour formation in gene perturbation experiments. In contrast, only 1 in 14 perturbations of the genes responding in a non-synergistic manner had a similar effect. Synergistic control of gene expression by oncogenic mutations thus emerges as an underlying key to malignancy, and provides an attractive rationale for identifying intervention targets in gene networks downstream of oncogenic gain- and loss-of-function mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号