首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为克服小流域数据资料少,河流溶解氧的非平稳特性及动态变化造成的预测困难,提出结合具有自适应噪声的完整集成经验模态分解(CEEMDAN)和Elman动态神经网络的预测方法.使用CEEMDAN方法对原始溶解氧时序数据进行平稳化处理及降噪,提取溶解氧随时间变化的波动特征、周期特征,以及长期趋势,通过计算样本熵(SE)值,将相似的特征序列合并,以减小误差累积,对合并后的新序列分别采用布谷鸟搜索(CS)算法优化的Elman模型进行预测,将各预测值叠加,得到最终预测结果.实验结果表明:CEEMDAN-SE-CS-Elman方法平均绝对误差(EMA)为0.14;平均绝对百分误差(EMPA)为2.07%;均方根误差(ERMS)为0.24;可决系数(R2)达到0.951 6,精度较其他时间序列预测模型有所提高.  相似文献   

2.
短时交通流的精准高效预测是实施智能交通控制的前提。以济南市交叉口地磁数据为研究对象,对数据进行质量识别和预处理,构建了基于NARX神经网络的短时交叉口流量预测模型,并对其进行了初始化和训练。使用该预测模型对城市道路交通流量进行的短时交叉口流量预测结果显示,除流量突变时刻外,该模型预测精度较高,平均相对误差仅为8.41%,证明该模型能够较准确地预测交叉口的短时交通流量,可以为城市交通的智能化管理与控制提供依据。  相似文献   

3.
4.
迷你型洗衣机价格便宜,使用方便,近年来销售量不断增加。缺点是功能单一导致消费受众面窄,同时受季节性因素影响较大,企业往往难以准确制定生产销售计划,导致库存和缺货现象时有发生。将合作企业生产的迷你型洗衣机近4年销售数据和影响销售的关联因素作为训练样本,先建立时间序列回归模型和BP神经网络模型对洗衣机销量进行预测,然后建立遗传算法优化的灰色神经预测模型。通过对三种模型预测结果的对比分析,表明经由遗传算法优化参数的灰色神经网络能较好的预测销量未来变化,辅助企业决策订单生产计划。  相似文献   

5.
为了提高电力负荷预测精度,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)算法和外部输入非线性自回归(nonlinear auto regressive with exogenous inputs,简称NARX)神经网络的短期负荷预测模型.首先,通过CEEMDAN算法对电力负荷原始信号进行分解,得到若干个本征模态函数分量和1个残差分量;然后,将得到的若干个本征模态函数分量和1个残差分量输入NARX神经网络进行预测;最后,将各分量的预测结果进行叠加得到短期负荷预测的最终结果.实验结果表明:CEEMDAN算法与NARX神经网络相结合的负荷预测模型有较强的收敛性能,能减少噪声对预测结果的不良影响、有效提高预测精度.  相似文献   

6.
为提高飞机上作动系统的功率预测精度,建立了改进的多变量灰色神经网络预测模型。考虑了对系统功率需求有较大影响的相关因素,采用主成分分析法提取综合变量作为输入,在提升准确性的基础上有效减少了输入维数;在利用递增方式对初始值进行选择的过程中,引入粒子群优化算法快速求解最优初始值和背景值,模型预测的平均误差由13.35%降为7.53%;考虑到序列波动对预测精度的影响,采用BP神经网络对预测值进行误差修正,进一步将模型的平均预测误差降为4.07%。仿真实验表明,含主成分分析的改进灰色神经网络对飞机作动系统的功率有较高的预测精度,有利于飞机的电能调度。  相似文献   

7.
针对BP神经网络多变量输入难以确定的缺点,提出了采用灰色关联分析法确定主要影响因子输入的多因子灰色关联分析神经网络预测模型,实例证明,该方法预测精度优于全输入BP神经网络预测。进一步提出了应用选优BP神经网络输入预测和GM(1,N)组合预测的模型,它结合了灰预测利用少数据累加生成建模,容易找出数据变换规律的特点和神经网络能很好地非线性逼近,又需要较全数据的特点。实证研究结果表明,该组和网络模型获得了更准确的预测值,模型新颖,具有更好的预测精度,可广泛应用于各种预测研究,有较高的推广价值。  相似文献   

8.
针对污水处理过程溶解氧浓度时变设定值难以控制的问题,提出一种溶解氧浓度的神经网络预测控制器设计方法.首先,在活性污泥法污水处理过程通用机理模型基础上,利用系统的输入、输出数据,采用递推学习更新模式,通过三层BP神经网络训练出系统神经网络逼近模型.然后,设计满足出水水质指标的溶解氧约束预测控制器.在考虑溶解氧测量白噪音干扰和进水流量发生阶跃变化情况下,将所设计的控制器用于污水处理溶解氧浓度的时变设定值跟踪控制.仿真结果表明:与传统PID控制器相比,神经网络预测控制器能够显著提高溶解氧跟踪控制性能,具有更好的自适应性和抗干扰能力.  相似文献   

9.
针对灰色预测对波动较强的序列只能预测大致变化的缺陷,结合灰色理论中的GM(1,1),和灰色残差GM(1,1)和RBF神经网络的特点,提出一种新的灰色神经网络预测模型,将灰色模型得到的数值作为神经网络的输入,原始数据作为神经网络的输出,训练得到最佳神经网络结构。以某地区地下水水质为例,根据其变化规律,应用有机灰色神经网络模型进行预测,结果表明,该模型拟合误差小,预测精度高。  相似文献   

10.
为了提高房价预测精度,采用基于主成分分析的BP神经网络预测模型.首先运用主成分分析对影响房价指标重新组合生成新的综合指标,然后采用非线性预测能力非常强的BP神经网络对其进行建模,并对房价进行预测.仿真结果表明,基于主成分分析的BP神经网络的房价仿真值与历史值的系统总误差只有0.52%,可作为房价预测的一种行之有效的方法.  相似文献   

11.
预测管道蜡沉积速率的BP神经网络模型研究   总被引:1,自引:0,他引:1  
利用灰色关联法分析了7个影响因素与管道蜡沉积速率的关联度,确定了模型的输入维数;通过建立7-10-1的BP神经网络预测模型预测了所取样本的蜡沉积速率,并对其预测精度进行验证和对比。结果表明:在考虑7个影响蜡沉积速率因素时,模型的精度可控制在0.5%左右,比考虑4个影响因素的精度更高;BP神经网络预测模型的精度与输入维数有关,维数的增大有利于精度的提高,但并不意味维数越高精度就越高;不同的初始权重和阈值对于预测的精度和泛化能力存在较大影响,但模型的精度仍在可接受范围内,因此,该模型可用于蜡沉积速率预测。  相似文献   

12.
为揭示北京市未来耕地面积变化情况,响应国家保障粮食安全的号召,构建PCA-BP神经网络进行预测并精度检验,验证该优化模型应用的可行性.本文以北京市为研究区域,以耕地面积数据和统计年鉴数据为基础,从时间和因素二维角度出发,选用灰色预测模型、指数平滑模型和PCA-BP神经网络,择优选择预测模型对北京市耕地面积进行了预测,预...  相似文献   

13.
采用灰色关联分析法筛选出江西省铁路货物周转量的主要影响因素,在此基础上建立了BP神经网络预测模型,并采用多元线性回归模型、二次指数平滑法、灰色GM(1,1)模型分别对江西省铁路货物周转量进行预测,再对结果进行比较和误差分析。研究表明,BP神经网络模型预测精度明显高于其它三个模型,平均误差为0.76%,可用于实际预测。  相似文献   

14.
针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(DO)质量浓度和浊度3项水质指标的变化趋势。结果表明:优化后的NAR神经网络模型具有较好的非线性处理能力;当输入数据量为180,pH、DO质量浓度和浊度的神经网络模型的延迟阶数分别为2、3、9,隐含层神经元数为10时,NAR神经网络模型对pH、DO质量浓度和浊度的预测均方根误差分别为0.053、0.382 mg/L和17.300 NTU,平均绝对百分比误差分别为0.53%、3.97%和18.01%,预测效果较好。  相似文献   

15.
为提高铁路货运量的预测准确性,运用灰色关联分析法,计算分析了与铁路货运量相关的主要社会指标,确定铁路货运量的影响因子分别为铁路运营里程、铁路电气化里程、铁路复线比重、公路运营里程、固定资产投资总额和钢材产量。将所确定的因子作为铁路货运量的预测指标,建立基于BP神经网络的铁路货运量预测模型,并对模型进行了应用测试。结果表明:BP神经网络模型具有较高的精度,最大相对误差为3.7%,平均相对误差为2.3%。该方法具有较快的收敛速度和较高的预测精度,可为我国铁路货运量的预测研究提供方法支撑。  相似文献   

16.
分析了影响汽车保有量的因素,运用灰色关联度理论选取主要影响因子,并采用主成分分析法对选定因子进行了相关性处理和降维处理,针对选取的相关因子建立了NARX神经网络预测模型。以此为基础,根据长沙市2000-2012年各指标的历史数据,对该市2013~2020年汽车保有量进行了区间预测,并进行了误差分析和灵敏度分析。研究结果表明,2013~2020年间该市汽车保有量的增加速度较为稳定,到2020年该市汽车保有量总数达1902847辆,修正后的预测值所属区间为E1891715,1913979];当经济增长速度降低1%时,汽车保有量平均增长速度降低0.53%;且政策对该市汽车保有量具有显著性影响。  相似文献   

17.
针对灰色预测对波动较强的序列只能预测大致变化的缺陷,在分析河流水质动态变化的基础上,结合灰色理论中的GM(1,1),无偏GM(1,1)和RBF神经网络的特点,提出有机灰色神经网络预测模型,将灰色模型得到的数值作为神经网络的输入,原始数据作为神经网络的输出,训练得到最佳神经网络结构.以某地区河流水质为例,根据其变化规律,应用有机灰色神经网络模型进行预测,结果表明,该模型拟合误差小,预测精度高.  相似文献   

18.
基于混合算法优化神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
提出了一种混合算法优化神经网络的混沌时间序列预测模型.将粒子群优化算法与模拟退火算法过程中概率突跳的思想相结合形成一种新的混合算法,并用此混合算法优化神经网络建立预测模型.该模型克服了传统的神经网络收敛慢、易陷入局部最优等不足.利用该模型对Mackey-Glass混沌时间序列和Henon映射进行实验仿真,结果表明,该模型收敛速度快,稳定性能好,预测精度高.  相似文献   

19.
【目的】分季节预测PM2.5浓度值,利用PCA方法对数据进行降维,分析季节及气象因素对PM2.5的影响,在提高预测准确率的同时降低时间复杂度。【方法】以合肥市2014—2017年的PM10、SO2、CO2、CO、O3浓度值,以及同时段的气象因素值,对PM2.5浓度进行预测。数据分析中发现PM2.5在不同季节浓度差异较大,故本研究选择分季节进行预测;为了提高预测准确率,加入如风力、温度、湿度、气压等气象因素进行预测,同时采用主成分分析(PCA)的方法进行数据降维,将降维后的数据再输入BP神经网络模型进行预测。【结果】实验采用3组实验进行对比:5种污染物指标(PM2.5-5)预测PM2.5、加入气象因素的综合12项指标(PM2.5-12)预测PM2.5、对综合指标进行PCA处理后的(PM2.5-PCA)预测PM2.5。实验结果表明:4个季节的PM2.5浓度值有较大变化,均方根误差(RMSE)的差值较大;采用PM2.5-PCA的方法,在任何季节的RMSE均有降低,相关系数(r)均有所提高。【结论】PM2.5浓度具有季节性特征,采用季节性预测方法可以提高预测准确率;同时采用PCA方法进行降维,可以在保证准确率的同时降低预测时间复杂度。  相似文献   

20.
基于RBF神经网络的时间序列预测   总被引:3,自引:0,他引:3  
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号