共查询到20条相似文献,搜索用时 67 毫秒
1.
针对传统卡尔曼滤波器用于高动态载波跟踪时性能不够理想的问题,提出一种基于机动目标模型匹配的卡尔曼滤波载波跟踪算法,能够在载波参数剧烈变化的条件下实现稳定的载波同步。所提算法较传统算法更加契合实际环境,具有实用价值高、应用范围广等优点。使用线性卡尔曼滤波器,无需矩阵求逆运算,计算复杂度低,便于工程实现。仿真结果表明,所提算法在跟踪具有剧烈动态特性的载体信号时能够显著提高跟踪精度,且跟踪门限信噪比能够降低约3 dB。 相似文献
2.
针对现有随机有限集(random finite set, RFS)扩展目标滤波器不能输出航迹的问题,提出了基于标签RFS滤波器的多扩展目标跟踪算法。该算法首先采用随机超曲面模型将目标建模为星-凸扩展形态,然后利用标签策略表征集合中的离散元素,结合基于延迟逻辑的多假设跟踪理论,采用N 次回扫策略对多帧量测进行平滑处理。仿真实验结果表明,该算法可以在目标跟踪过程中形成完整航迹并对目标扩展形态进行有效估计,特别是在低信噪比探测场景中,所提算法跟踪精度明显优于传统RFS滤波算法,进一步提高了滤波器的稳定性和有效性。 相似文献
3.
全极化三维散射中心模型可准确描述目标的空间几何以及极化特征,已成为目标识别的有效手段之一。针对传统高分辨距离像的匹配算法计算量大、耗时长的不足,提出一种基于预分类的模型匹配目标识别方法,通过目标散射机理分析,对目标进行预分类,减小匹配模型数,然后利用全极化高分辨距离像的散射中心位置与极化信息构造模型匹配函数,实现了目标类别的判定。基于电磁仿真计算数据的识别实验表明,该方法具有良好的目标识别能力,相比于传统方法具有更高的识别正确率以及更低的存储量和计算量。 相似文献
4.
基于交互式多模型算法跟踪临近空间目标 总被引:1,自引:0,他引:1
由于目前机动目标模型越来越向模块化、并行计算的方向发展,对目前算法计算效率提出了更高的要求。对于临近空间超声速机动目标一般采用多种机动模型跟踪,单一模型已经很难满足高精度跟踪的需要。因此需要使用基于多种模型进行交叉耦合的交互式多模型(interacting multiple model, IMM)算法,这种算法特点与临近空间目标高速、高机动特性相适应。同时考虑到扩展卡尔曼滤波 (extended Kalman filter, EKF) 算法对强非线性对象滤波效果不好, 无迹卡尔曼滤波(unscented Kalman filter, UKF)算法对于此类问题,可以很好地加以解决。仿真对比试验表明,交互式多模型〖CD*2〗无迹卡尔曼滤波(interacting multiple model unscented Kalman filter, IMM UKF)算法优于单一模型EKF算法。 相似文献
5.
6.
在基于直方图的序列图像目标跟踪算法中,目标的直方图通常都是在跟踪初始化时从目标所在的区域获得,然而单个直方图难以适应跟踪全过程中目标的各种变化。针对事先已知目标几种典型外观的跟踪问题,提出了一种基于粒子滤波器的多直方图尺度空间跟踪算法。利用多个典型直方图的线性加权来表示目标的直方图,根据目标的当前区域估计加权系数,生成下一帧的目标概率分布图,在目标概率分布图上运用尺度空间粒子滤波器,来估计多尺度规范化Laplacian滤波函数的极值,从而实现目标的定位。通过在真实序列上与现有算法的对比,表明了此算法不仅可以适应目标的色彩和明暗变化,而且能更准确地描述目标的大小,显著提高跟踪的精度。 相似文献
7.
针对现有机动目标跟踪中粒子滤波算法的不足,提出了一种改进的粒子滤波方法。该方法在高斯粒子滤波的基础上通过利用当前时刻量测值对量测误差的分布参数进行实时的统计和更新,并以此得到粒子的权值,从而考虑到了量测值对估计值的影响,该方法适合于量测误差分布为高斯白噪声且状态量与量测误差相关条件下的非线性估计。仿真结果表明,与传统的自举粒子滤波(boot trap particle filter, BPF)、高斯粒子滤波(Gaussian particle filter, GPF)以及无迹粒子滤波(unscented particle filter, UPF)相比,该方法具有较高的精度和较少的计算量。 相似文献
8.
跟踪机动目标的多模型算法进展 总被引:5,自引:0,他引:5
对多模型算法的发展过程进行了回顾和评述。分析了固定结构多模型算法的局限性。在变结构多模型算法的实现方法中 ,介绍了激活有向图方法、自适应网格方法和有向图切换方法。通过一个仿真实例比较了固定结构与变结构多模型算法的费效比 相似文献
9.
针对标准标签多伯努利(labeled-multi-Bernoulli, LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model-LMB, MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density, MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli, MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。 相似文献
10.
11.
针对杂波环境下的多目标跟踪,概率假设密度(probability hypothesis density, PHD)滤波不能提供目标航迹信息的问题,提出一种基于PHD滤波和数据关联的多目标跟踪方法。利用PHD滤波消除杂波并得到各个时刻的目标个数和目标状态估计。将PHD滤波的结果重新定义为量测数据,通过数据关联进一步消除虚警和漏警并给出目标航迹。仿真结果表明,该算法可以在有效地提高杂波环境下多目标跟踪精度的同时提供各目标航迹信息。 相似文献
12.
对于相控阵雷达方向余弦量测,采用扩展卡尔曼概率假设密度(extended Kalman probability hypothesis density, EK PHD)滤波进行多目标跟踪时,存在目标数估计偏高和目标状态估计准确度低的问题。针对上述问题,提出了一种新的多目标跟踪算法——无偏转换量测概率假设密度(unbiased converted measurements PHD, UBCM PHD)滤波算法。该算法采用方向余弦量测下的量测转换方法,保留了更多的量测信息;同时对转换后的量测偏差进行补偿,使量测转换误差的均值、方差准确近似原始量测高斯分布的一、二阶矩。仿真实验表明,所提算法可提高目标数和目标状态估计准确性。 相似文献
13.
基于核密度估计高斯混合PHD滤波的多目标跟踪算法 总被引:1,自引:0,他引:1
针对多目标跟踪系统中传统算法目标估计精度较低的问题,提出了基于核密度估计的高斯混合概率假设密度(probability hypothesis density, PHD)滤波算法。在该算法中,经过剪枝、合并后,引入核密度估计理论的Mean shift算法,对高斯混合PHD分布密度函数进行核密度估计,取代了传统算法中的状态估计方法。最后,选择估计后得到的峰值作为目标状态估计值。仿真结果表明,基于核密度估计的高斯混合PHD滤波算法比传统算法具有更高的估计精度。 相似文献
14.
针对传统的高斯混合概率假设密度(Gaussian mixture probability hypothesis density,GM-PHD)滤波器在跟踪空间邻近目标时存在错误估计、虚警和漏警问题,本文提出了一种改进算法.首先,提出一种权值重分配方案,对目标的高斯分量权值进行重分配,以提高目标邻近时GM-PHD滤波器的... 相似文献
15.
考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density, CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新生目标量测集,在两个量测集分别运用PHD组处理更新基础上建立了处理模块的交互与协同机制,力图在保证跟踪精度的同时提高计算效率。该框架由于采用PHD组处理方式而具有状态自动提取功能。进一步给出了该框架的序贯蒙特卡罗算法实现。仿真结果表明,该算法在计算效率以及状态提取精度上具有明显优势。 相似文献
16.
针对传统粒子概率假设密度(probability hypothesis density, PHD)滤波跟踪被动多目标时,估计精度不高,且存在粒子退化,容易导致滤波器发散的问题,提出一种新的被动多目标跟踪算法--高斯厄米特粒子PHD滤波算法。该算法采用一族高斯厄米特滤波产生的高斯分布拟合更优的重要性密度函数,充分考虑了当前时刻的最新量测,并将该方法融入高斯混合粒子PHD(Gaussian mixture particle PHD, GMP-PHD)滤波框架中,在解决观测非线性的同时,有效提高了被动多目标的跟踪精度。实验结果表明,该算法较传统的GMP PHD滤波算法具有更高的状态估计精度,且有效降低了目标的失跟率。 相似文献
17.
基于混合粒子滤波的多目标跟踪 总被引:1,自引:0,他引:1
针对可变数量的多个红外弱小目标的检测与跟踪问题,提出了基于混合概率密度模型的多目标先跟踪后检测方法,开发了一种t分布混合粒子滤波器.在混合粒子滤波器中,利用每个分量粒子滤波器的输出信息,根据序列似然比假设检验,检测每个被跟踪目标的存在性.通过估计目标在离散占据网格上的出现概率,检测新目标的出现.混合粒子滤波器使用单独的粒子滤波器独立估计每个被跟踪目标的状态,避免算法的计算量随着目标数量增加呈指数增长的问题.仿真实验证明混合粒子滤波器能够跟踪目标数量可变的弱小目标,能够同时检测目标的消失和出现. 相似文献
18.
视频多目标跟踪中目标较多时,联合概率数据关联算法计算量大,实时性差。由于遮挡等问题,联合概率数据关联算法得到的往往是目标的轨迹片段。针对上述问题,首先利用线性规划自适应迭代求解m个最优联合事件简化联合概率数据关联算法,然后提出基于Kalman滤波及外推法的双向运动预测计算轨迹间的距离矩阵,用近邻传播聚类对目标的轨迹片段进行关联。实验结果表明,本文提出的方法在目标多且容易发生遮挡的情况下仍能够实时有效的跟踪,提高了跟踪准确度,具有一定的抗干扰能力。 相似文献
19.
为解决传感器观测数据具有不确定性和模糊性的多目标跟踪问题, 首先给出了模糊观测的随机子集表示及其似然函数构造方法; 然后利用所构造的似然函数, 并结合概率假设密度(PHD)滤波器来实现模糊观测的多目标跟踪. 仿真结果显示, 标准PHD滤波器在模糊观测下会出现目标数目估计不准确的问题. 针对这一问题, 在分析了该问题产生原因的基础上, 通过改进PHD滤波器的更新过程, 提出了一种单量测独立更新的PHD滤波方法. 仿真结果表明, 在模糊观测下, 改进算法能得到比标准PHD滤波方法更准确的目标数目估计和更高的跟踪精度. 相似文献
20.
Bayesian target tracking based on particle filter 总被引:7,自引:0,他引:7
1 .INTRODUCTIONIn many fields including target tracking, robotics ,signal processing, ti me-series analysis , etc , theKal manfilter is one of the most widely used methodsfor esti mationinlinear Gaussiansystemand measure-ment models . However , the application of theKal man filter to nonlinear systems can be difficult .Most common approach is to use the extendedKal manfilter (EKF) .EKFsi mplylinearizes all non-linear models by using Taylor series expansions andcan, however , lead to p… 相似文献