首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文应用XRD和SEM现代测试手段对粉煤灰和硅粉分别在水泥-粉煤灰和水泥-硅粉水化系统中的行为进行了研究.分别以水化1天、3天、7天、28天和90天的图形和照片,比较系统地显示了粉煤灰和硅粉不同的水化活性以及硬化浆体中各主要反应物和产物相的演变动力学.  相似文献   

2.
激发剂对粉煤灰水泥胶凝材料水化性能的影响   总被引:2,自引:0,他引:2  
用结全水量、三甲基硅烷化--气相色谱、差热分析和X射线衍射等方法研究了激发剂对偻煤灰水泥胶凝材料水化性能的影响,发现激发剂能加快粉煤灰水泥胶凝材料的水化速度再水化,使粉煤灰先解聚再水化,粉煤灰中单掺激发剂,水化反映难以进行,激发剂对粉煤灰水泥胶凝材料的水化产物种类影响不大。  相似文献   

3.
低水胶比复合胶凝体系的水化机理和水化行为较普通水胶比胶凝体系存在一定差异,该条件下传统的水化结论往往不再适用.以不同低水胶比水泥-粉煤灰-矿渣复合胶凝体系为研究对象,通过测试净浆试件7d水化热,结合水化动力学模型探明了低水胶比、矿物掺合料掺量对其水化行为和水化机理的影响,并通过透射电子显微镜(TEM)和X射线衍射(XRD)分析了低水胶比复合胶凝体系的水化产物差异.研究结果表明:水胶比为0.2、粉煤灰-矿渣复掺量小于50%时,复合胶凝体系早期和后期的放热速率无明显差异,此时复掺粉煤灰-矿渣对水泥水化存在一定促进作用,当水胶比增至0.25和0.3时,复掺粉煤灰-矿渣在10~17h抑制了水泥水化;当水胶比由0.3降低至0.2时,胶凝体系最大放热速率呈增大趋势,且水化过程由NG-I-D改变为NG-D,不再经历相边界反应;水化至28d时,水化硅酸钙(C-S-H)的形貌随着水胶比的降低,由纤维状向球状转变.  相似文献   

4.
在使用粉煤灰水泥时,常常担心粉煤灰水泥因二次水化反应消耗掉水泥水化产物中的Ca(OH)2,使粉煤灰水泥的护筋性欠佳.通过测试掺入粉煤灰的水泥水化28 d的pH值,可以看出即使是粉煤灰掺量在70%时,其水化28 d的pH值也大于11.5,不会导致粉煤灰水泥的碱度过低,影响其护筋性.采用浸烘循环法直接测试粉煤灰水泥在粉煤灰掺量为50%、60%时的护筋性,经过30次的循环,胶砂试件中钢筋的失重率与硅酸盐水泥处于同一水平.试验结果表明,粉煤灰水泥具有良好的护筋性.  相似文献   

5.
探讨氯化钠对粉煤灰水泥不同阶段性能与水化程度的影响.结果表明:掺入适量的氯化钠可以不同程度地提高粉煤灰水泥不同龄期的水化程度与抗压强度而缩短其凝结时间;当氯化钠掺量一定时,随着粉磨时间的延长,粉煤灰水泥不同龄期的水化程度与抗压强度均有不同程度的提高但增幅下降.随着氯化钠掺量的增加,粉煤灰水泥不同龄期的水化程度与抗压强度均先增加后下降,但其凝结时间却先缩短后增加;当氯化钠掺量为2%,粉磨时间为15min时各龄期的水化程度与抗压强度均达到最大值,而粉煤灰水泥的凝结时间最短.粉煤灰水泥水化3d的水化程度与抗压强度的增幅最大,而水化28d的相应增幅最小.  相似文献   

6.
探讨氯化钠对粉煤灰水泥不同阶段性能与水化程度的影响. 结果表明: 掺入适量的氯化钠可以不同程度地提高粉煤灰水泥不同龄期的水化程度与抗压强度而缩短其凝结时间; 当氯化钠掺量一定时, 随着粉磨时间的延长, 粉煤灰水泥不同龄期的水化程度与抗压强度均有不同程度的提高但增幅下降. 随着氯化钠掺量的增加, 粉煤灰水泥不同龄期的水化程度与抗压强度均先增加后下降, 但其凝结时间却先缩短后增加; 当氯化钠掺量为2%, 粉磨时间为15min时各龄期的水化程度与抗压强度均达到最大值, 而粉煤灰水泥的凝结时间最短. 粉煤灰水泥水化3d的水化程度与抗压强度的增幅最大, 而水化28d的相应增幅最小.  相似文献   

7.
综述了粉煤灰的结构形态特征及其水化机理和水化特性,总结分析了加速和改善粉煤灰早期活性的方法和途径,以提高粉煤灰在水泥中的掺量和提高掺粉煤灰水泥的早期强度.并针对当前研究中有待解决的问题提出了建议,对今后的发展方向提出了展望.  相似文献   

8.
水泥-粉煤灰浆体的水化反应进程   总被引:8,自引:0,他引:8  
为考察粉煤灰对水泥水化进程的影响,系统研究了水泥粉煤灰浆体在不同养护龄期、水胶比、粉煤灰掺量下水泥和粉煤灰反应程度、非蒸发水数量、水化产物数量、孔结构和浆体力学性能.根据实验结果,建立了水泥粉煤灰浆体中水泥反应程度与有效水灰比间的定量关系,推导出水泥和粉煤灰反应程度与胶空比之间的计算公式,并通过研究胶空比与浆体抗压强度关系曲线和比较胶空比与实测孔隙率来验证该公式的正确性;另外,还对水泥粉煤灰浆体的非蒸发水量与水化产物数量间的关系进行了研究,结果表明二者呈线性相关,可用非蒸发水量反映水化产物数量.  相似文献   

9.
以钢渣、粉煤灰、水泥熟料为主要原料,并掺入少量激发剂,制备高混合材掺量高强复合水泥.研究钢渣细度、水泥的复合组分比例及激发剂对钢渣粉煤灰复合水泥性能的影响,并通过SEM、XRD分析激发剂对复合水泥水化性能的影响.结果表明:钢渣比表面积在310m2/kg以上时,钢渣具有较好的活性.激发剂可进一步增大钢渣、粉煤灰的水化活性,加快复合水泥的水化速度,从而提高水泥的力学性能,缩短水泥的凝结时间,但激发剂对复合水泥水化产物种类影响不大.  相似文献   

10.
首先通过化学反应动力学原理推导出水泥恒温水化反应速率方程,得出利用水泥水化度α表达的水化反应速率方程;然后联合运用两种试验方法测定水泥恒温(20±1℃)养护水化的累计水化反应热,进而推导计算出水化反应速率随水化程度的变化曲线。最后根据曲线的发展变化规律选择合适的函数拟合计算,从而提出吻合度较高的对数正态分布密度Log-noemal模型,并计算出Log-noemal模型与测试结果的相关系数r高达0.937 3,得出Log-noemal模型比较适合评价水泥恒温水化动力学模型(反应速率的变化规律)。  相似文献   

11.
粉煤灰混凝土的多因素寿命预测模型   总被引:4,自引:1,他引:4  
通过快速碳化试验,研究了不同粉煤灰掺量(0~60%)、不同养护龄期(1,3,7,28,90 d)、不同弯曲荷载率(0,25%,50%)对m(W)/m(C)=0.34混凝土的碳化影响,并建立了综合考虑粉煤灰掺量、养护龄期、荷载率、环境温度、结合能力以及混凝土的CO2扩散系数时间依赖性的多因素寿命预测模型.结果表明:混凝土的CO2扩散系数与粉煤灰掺量成二次函数关系,粉煤灰掺量30%左右最佳.混凝土的CO2扩散系数随养护龄期的增加而降低,随荷载率的增加而增加.其关系分别符合指数关系和乘幂关系.使用多因素碳化寿命预测模型对大桥的箱梁和索塔进行预测,箱梁的运营寿命为211年,索塔为167年.增加养护龄期或提高保护层厚度是提高大掺量粉煤灰结构混凝土寿命的重要途径.  相似文献   

12.
基于以废治废有效利用大掺量粉煤灰治理淤泥的思路,使用水泥和生石灰作为粉煤灰的激发剂,同时使用高吸水树脂内供水进行固化土内养护,进行固化土无侧限抗压强度试验和含水率试验.水泥加高吸水树脂、水泥加粉煤灰及水泥加生石灰双掺固化试验发现,各掺量下固化土的强度随龄期的增长而增长,在水泥掺入比一定时各种固化材料存在最佳掺量;以此为基础的四种材料的正交试验得出了固化淤泥的最佳的配比组合并分析固化机制,可以为低掺量水泥处理高含水率疏浚淤泥的实际工程提供参考.含水率试验得出粉煤灰和生石灰能快速降低固化土的含水率,高吸水树脂能够延缓固化土含水率的降低,能够通过内供水的方式保证水化反应环境,继而促使水化反应更大程度地进行.  相似文献   

13.
为了研究粉煤灰掺量对水泥土渗透性能的影响,通过在粉煤灰水泥土中加入水玻璃激发粉煤灰活性,并制作不同固化剂配比的粉煤灰水泥土试块,在养护不同龄期后分别进行渗透试验以及电镜试验。试验结果表明:随着养护龄期的增加,所有粉煤灰水泥土试样的渗透系数都有显著的降低;水泥掺量为60%的粉煤灰水泥土较纯水泥土而言,在养护14 d前的渗透系数更大,但在养护28 d后的渗透系数则变得较低;渗透试验反压差对于养护龄期较短的试样影响较大;在微观角度,水泥土试样的内部孔隙结构与渗透系数之间有着明显的相关性。  相似文献   

14.
粉煤灰掺量与砂浆强度和水化参量的关系   总被引:4,自引:0,他引:4  
对水胶比为0.15,I级粉煤灰掺量分别占胶凝材料总量(质量分数)为0,0.20,0.30,0.45和0.55的砂浆试样,经标准养护(d)7,28,90,180和365时的抗压强度、浆体非蒸发水量和CH含量,进行了系统测试,试验数据经回归分析,发现粉煤灰掺量与砂浆抗压强度、非蒸发水量和CH含量之间,分别存在很好的线性相关关系,从中,可以定量研究在不同的粉煤灰掺量和养护龄期时,粉煤灰效应对大掺量粉煤灰水泥基材料的力学性能和水化进程的影响规律。  相似文献   

15.
大体积混凝土因早期水化热引起的温度场 会导致开裂, 影响结构安全和正常使用, 其中混凝土热学参数的准确性会直接影响混凝土温度场计算的准确性. 从胶凝材料水化反应机理出发, 基于化学反应动力学原理及不同矿物组成的水泥水化热实验数据, 提出了一种考虑粉煤灰掺入和温度影响的混凝土水化放热模型. 该模型可以准确地反映混凝土水化放热量及温升随龄期的变化, 且与实测值吻合良好.  相似文献   

16.
针对上海苏州河区域的软土特点,将粉煤灰和水泥作为固化材料加固饱和软黏土,研究粉煤灰对水泥土力学特性的影响.通过无侧限抗压强度试验,研究了不同粉煤灰掺量、水泥掺量以及不同龄期对水泥土强度和变形特性的影响;通过Matlab数据拟合,提出了水泥粉煤灰固化土的强度预测方法.随着龄期的增长和粉煤灰掺量的增加,固化土的应力应变关系由塑性破坏转变成脆性破坏.当粉煤灰掺量过高时,水泥土中易发生耦合反应,影响固化效果.因此,水泥掺量与粉煤灰掺量比例为1∶1,且粉煤灰最佳掺量为14%~18%.  相似文献   

17.
研究掺低钙、高钙粉煤灰对结构混凝土坍落度、抗压强度、混凝土碳化、氯离子扩散系数、干湿循环破坏等性能的影响.研究表明低钙、高钙粉煤灰对混凝土坍落度没有影响,在相同的养护龄期里掺高钙粉煤灰的混凝土抗压强度大于低钙粉煤灰混凝土.掺加低钙、高钙粉煤灰对混凝土碳化、氯离子扩散系数、干湿循环破坏有影响,掺加低钙粉煤灰混凝土具有比掺高钙粉煤灰混凝土更大碳化深度,掺低钙、高钙粉煤灰对混凝土氯离子扩散系数影响不明显,在干湿循环初始阶段掺低钙粉煤灰混凝土抗压强度、相对动弹性模量增加程度大于掺高钙粉煤灰混凝土增加程度,干湿循环超过30次后高钙粉煤灰混凝土抗压强度、相对动弹性模量劣化增加程度小于低钙粉煤灰混凝土抗压强度劣化损伤增加程度.  相似文献   

18.
设计温度跟踪养护系统来模拟实际结构中混凝土所经历的温度历程,通过测试在标准养护条件20℃、恒温50℃和变温养护条件下不同强度等级的粉煤灰混凝土早龄期抗压强度的值,分析温度历程对粉煤灰混凝土早龄期抗压强度的影响。根据混凝土早龄期抗压强度的两个主要影响因素:温度和龄期,引入等效龄期理论建立了粉煤灰混凝土早龄期抗压强度的计算模型,并分析了模型参数。实际结构中的粉煤灰混凝土抗压强度可以通过测定温度场,利用计算模型进行相应龄期的抗压强度计算。研究结果表明,粉煤灰混凝土抗压强度计算模型能够较准确计算结构中粉煤灰混凝土的抗压强度,从而有效指导粉煤灰混凝土的工程应用。  相似文献   

19.
运用均匀试验设计和回归分析方法优化烟尘水热化合反应制备钙基脱硫剂工艺,得到比表面积回归方程.分析不同水热条件及其相互作用对钙基脱硫剂比表面积的影响,经优化筛选并兼顾实际操作得到最佳水热条件,制备的高效钙基脱硫剂比表面积超过120 m2/g,是单一Ca(OH)2的10倍以上,优化效果显著,可以为工业生产提供依据.  相似文献   

20.
高钙粉煤灰的本征性质与水化特性   总被引:14,自引:0,他引:14  
通过实验 ,研究了高钙粉煤灰的本征性质与其水化特性间的关系 .研究结果表明 ,高钙粉煤灰由于其硅酸盐离子聚合度低 ,游离氧化钙含量高 ,因此具有水化活性好、减水效果好、早期强度发展快、水化时易产生体积膨胀等特性 .但高钙粉煤灰中游离氧化钙的晶粒较小 ,晶格畸变较大 ,因而在水泥基材料水化时产生的膨胀发展较快 .采取适当的技术措施后 ,可将其开发成一种高效的辅助性胶凝材料  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号