首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
阐述了五轴机床的综合误差建模过程,对传统的建模过程进行了优化处理,得到了包含方向误差在内的综合数学模型。  相似文献   

2.
用三次多项式对数控机床几何误差进行拟合,建立了与数控机床几何误差模型相适应的测量方案,减少了所需辨识参数的数目,提高了测量效率;利用Matlab软件求解dX的表达式中系数矩阵的条件数,验证了测量点选取的合理性;以一台五轴数控加工中心(TTTRR)为例,对一工件进行误差测量,对其误差参数进行辨识,验证了本文的误差参数辨识方法的可行性及测量方案的合理性.  相似文献   

3.
针对影响五轴数控机床加工精度的复杂热特性,提出了一种用于摇篮式五轴数控机床热误差建模方法.该方法主要采用鲨鱼嗅觉优化(SSO)算法和神经网络的复合建模方式,有效提高了机床热误差预测模型的精度和建模效率.首先通过使用热成像仪筛选出机床的温度敏感点,然后将温度传感器布置在机床热敏感点的位置,将采集到的热特性数据采用本文所提方法进行热误差建模,结果表明,该方法在建模速度和精度上要优于ABC和PSO神经网络,最后将该热误差预测模型应用于五轴数控机床热误差补偿实验,将试件加工精度提高了32%.  相似文献   

4.
摆角精度是影响五轴数控机床加工性能的关键因素,而对摆头各项几何误差进行准确测量是机床实际应用过程中的重要技术环节。该文以一台用于航空发动机机匣加工的单摆角五轴数控机床为研究对象,对其摆头几何误差进行了测量,并完成了精度验证。首先,介绍了摆头直驱五轴数控机床的整体结构,针对主轴端面至A轴回转中心距离偏差、摆头摆动扇面与YZ平面偏差和主轴轴线与A轴轴线高度差等摆头主要几何误差,提出了实用的测量方法,并开展了相应的测量实验;其次,对摆角定位精度进行了检测并分析了相应的位置偏差;最后,完成了机匣模拟试件切削。检测结果表明试件符合加工要求,充分证明了样机具有良好的摆角精度。该文所提出的误差测量方法为提升五轴数控机床的实际加工性能奠定了基础。  相似文献   

5.
热误差是影响机床加工精度的主要误差项.为了快速检测机床自身热误差,在研究机床综合误差和球杆仪检测原理的基础上,提出了一种快速有效的检测方法——球杆仪法.通过建立三轴数控机床的几何误差和热误差的综合误差模型,提出机床的几何误差和热误差的检测及分离方法,并对影响加工精度较大的主轴与Z导轨的平行度误差、标尺热变形导致的比例误差以及滚珠丝杠变形导致的周期性误差等主要热误差项进行了球杆仪圆轨迹测试法的模拟仿真,通过进行球杆仪检测实验,测得机床空载时的主轴端热漂移误差,得到其变化规律曲线.相对于传统热误差检测法,该方法简捷有效.  相似文献   

6.
阐述了国外数控机床的几何误差、热误差建模及补偿历史,对精度高的建模和补偿方法进行了分析,指出了其优缺点,对设计新的建模和补偿方法具有重要的指导意义。  相似文献   

7.
 以立式B-A 摆头五轴数控机床为例,根据机床误差元素的时变特性,研究一种能够反映静、动态综合误差的数控机床误差建模方法。将动态误差表达为与运动单元速度、加速度相关的傅里叶级数形式,并与静态误差结合,将运动副误差元素表达为静态误差矩阵与动态误差矩阵的复合形式,利用多体系统理论构建了静、动态误差与刀具轨迹误差的映射关系模型。理论分析表明,基于时变特性的综合误差建模方法考虑了运动学、动力学两方面的影响因素,可以更准确地反映机床高速、高精加工过程产生的实际误差,从而为数控机床的误差补偿及控制参数整定奠定一定的理论基础。  相似文献   

8.
数控机床实时误差补偿技术及其应用   总被引:8,自引:0,他引:8  
以某厂一台数控双主轴车床为研究对象,根据齐次坐标转换原理,给出了该机床的几何误差和热误差的综合数学模型.对于不同的热误差因子,给出了不同的热误差数学模型,通过计算机分析合成误差曲线的斜率,分离了热误差和几何误差.补偿系统主要由微机结合机床控制器构成.由机床的温度信号和工作台运动位置信号结合综合误差数学模型,通过微机算出补偿值并送入机床控制器对刀架进行附加进给运动完成实时补偿.补偿试验表明,工件之间的尺寸变化可从原来的60μm以上降到14μm;工件的锥度变化从50μm/cm以上降到15μm/cm,大幅度提高了机床的加工精度,满足了工厂的实际生产需要.  相似文献   

9.
基于多体系统理论的五轴机床综合误差建模技术   总被引:1,自引:0,他引:1  
采用多体系统理论完成了五轴数控机床的综合误差建模,对平动轴间垂直度误差做了建模分析,改进了热误差的建模和辨识.该方法简便、明确,不受机床结构和运动复杂程度的限制,为计算机床误差、实现误差实时补偿、修正控制指令和提高加工精度提供了理论基础.  相似文献   

10.
数控机床热误差的最优线性组合建模   总被引:2,自引:0,他引:2  
提出数控机床热误差的最优线性组合建模方法及其相关算法.该方法通过线性和的方式对基于不同数学理论所建立的热误差模型进行综合,并以不同拓扑结构及训练算法的反向传播神经网络为例,建立了最优线性组合神经网络.通过对一台CNC机床的实际加工数据进行分析,对该建模方法进行验证,并探讨了该方法的最佳使用条件及其原因.建模结果表明,所提出的方法能够在节省建模时间的同时大幅提高所建立模型的预测精度,是一种高性价比的建模方法.  相似文献   

11.
为提高结晶器坐标测量机的测量精度,运用齐次坐标变换矩阵,建立测量机测头中心相对于底座参考坐标系的测量模型,并进行误差修正。实验结果表明,该测量模型可以综合修正21项几何误差,使测量机测量精度提高30%~40%。该研究以误差补偿来提高测量精度,使测量精度由注重零部件的制造转向系统稳定性的高精度检测。  相似文献   

12.
针对陀螺框架高精度垂直孔系加工精度影响因素多且无综合分析测评方法的工程实际,采用齐次坐标变换的分析方法,建立了坐标镗床上应用转台精镗陀螺框架孔的同轴度误差模型,设计实现了误差分析软件,对陀螺框架的同轴度误差进行了定量分析,实现了陀螺框架加工误差的快速预测.加工试验结果表明该模型分析结论与加工试验结果具有较好一致性,分析方法对系列新产品开发具有指导作用.  相似文献   

13.
基于运动轨迹测量的加工中心几何误差控制   总被引:1,自引:0,他引:1  
利用机器人运动学的齐次坐标变换原理和小角度假设,建立了三轴立式从加工中心刀尖到工件的封闭矢量链,推导出包含21项几何误差的三轴立式加工中心几何误差模型,给出基于运动轨迹误差测量的几何误差辨识方法。建立的基于运动轨迹误差测量的几何误差模型可以推广应用到其他型式的数控机床误差的建模、辨识和控制中。  相似文献   

14.
文中针对确定各零部件几何误差对装配精度的影响以及瓶颈装配工序等重要问题,分析了两零件装配时由于配合面表面形貌所导致的几何误差造成的零件位姿变动,确定单工序的配合误差.以此为基础,基于多体系统理论建立多工序装配过程误差传递模型,用矩阵微分法建立了几何误差对装配精度的灵敏度分析模型.该模型可以识别出多工序装配过程中对装配精度有较大影响的主要零部件几何误差,从而为精密装配精度分析以及控制提供基础,并通过实例验证了模型及分析方法的有效性.   相似文献   

15.
该文对并联机构在现代机床上的应用作了论述,建立了虚拟轴机床并联机构的一种误差分析方法,应用坐标变换原理导出了双三角并联机构水平姿态时的误差方程组;分析了误差方程组的线性和非奇异性,给出水平姿 态时的位姿误差正解;对工作空间中心线的误差分布规律进行了仿真,绘制了其误差分布曲线。  相似文献   

16.
本文以旋转变换张量的方法来分析计算空间点的座标及其误差的影响,提出变换矩阵法,并用它来分析计算三座标测量机所给出测点座标值的精度。这种方法也能用于其他空间机构的分析计算和建立三座标测量机误差修正的数学模型.  相似文献   

17.
数控机床热误差的混合预测模型及应用   总被引:7,自引:0,他引:7  
基于机床热变形误差的产生机理及其表现形式的复杂性,综合时序分析方法建模和灰色系统理论建模的优点,研究了一种智能混合预测模型.将该模型应用于一台数控车削加工中心进行热误差趋势预测,以进行机床热误差补偿研究.结果表明,混合预测模型预测精度高于时序分析模型和灰色系统模型,其优异的预测性能可使数控机床进行实时补偿更加有效,从而大大提高机床热误差的补偿精度.  相似文献   

18.
讨论了测量五轴加工中心几何误差的典型R-test装置的研究现状,阐述了R-test装置的工作原理及结构,建立了该新型测量装置的理想和实际结构的数学模型,推导了传感器读数和精密中心球三向位移之间的转换矩阵.采用数值分析方法对该模型进行灵敏度分析,确定了影响该机床误差测量装置的主要误差因素,并通过Monte-Carlo方法分析了该装置的整体不确定度.  相似文献   

19.
针对主要基于受综合因素影响的机床本体温度所建立的热误差模型鲁棒性较差的问题.综合考虑机床本体温度、动力源转速、冷却液温度及环境温度提出了多变量关联热误差组合模型.将最小二乘支持向量机(LS-SVM)的方法运用到热误差建模中,并利用偏最小二乘(PLS)方法提取输入变量的主成分作为LS-SVM的输入,形成PLS-LSSVM组合热误差模型.此外根据数控加工过程及材料热变形原理,将相对起始温度的差温值作为温度输入,使热误差补偿更加准确.在某型号精密加工中心进行实验验证,结果表明:PLS-LSSVM模型比LS-SVM更稳定,比PLSR预测精度高;考虑差温多变量的PLS-LSSVM模型较单纯考虑机床本体测量温度值的PLS-LSSVM~*模型,热误差预测值的均方根误差(RMSE)平均减少了5.5μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号