首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过电纺丝法制备聚丙烯腈纳米纤维,分别采用平面铝箔、滚筒、改装滚筒和转盘作为接收装置,并考察其对纤维定向性的影响。使用扫面电镜观察纤维的排列情况,结果表明转盘的定向效果最好,并且随着转速的提高定向性逐渐变好,当转速达到11.5m/s时纤维的定向性最好。为改善微量纤维从接收装置上取下时的断丝问题,考察不同试剂的作用效果,选取甘油作为接收装置表面涂覆试剂,改善纤维取下时的断丝问题,扫面电镜的观察表明微量甘油的涂覆可有效解决纤维从接收装置上取下时由于静电吸附引起的断丝问题。  相似文献   

2.
采用静电纺丝法制备聚丙烯腈(PAN)纳米纤维膜,通过扫描电子显微镜(SEM)观察纳米纤维膜形貌与纤维直径,并分析了纳米纤维膜厚度、加入不同质量分数NaCl、接收滚筒转速、热轧和平板硫化热黏合对纳米纤维膜强力、伸长率和含油污水过滤性能的影响.结果表明:随着纺丝厚度的增加,纳米纤维膜强度呈线性增加趋势,伸长率呈先增加后减小趋势;加入NaCl对纳米纤维膜强力的影响不显著;接收滚筒转速越高,沿纤维排列方向的纳米纤维膜强力呈增加趋势,垂直纤维排列方向的则呈减少趋势,两个方向的纳米纤维膜伸长率均呈下降趋势;热轧和平板硫化热黏合是提高纳米纤维膜强力最有效的方式,热轧与平板硫化热黏合方式制备的复合纤维膜的断裂强力为50~60N,断裂伸长率为50%~75%,强力约是纳米纤维膜的60倍,强度是纯纳米纤维膜的10~20倍.此外,平板硫化热黏合的复合纤维膜乳化油截留率高达98.56%,高于聚偏氯乙烯(PVDF)商品超滤膜(97.00%),且纯水通量为4 004L/(m~2·h),因此,平板硫化热黏合复合纤维膜在水处理方面具有巨大的应用潜力.  相似文献   

3.
聚丙烯腈螯合纳米纤维的制备及其吸附性能研究   总被引:1,自引:0,他引:1  
用羟胺试剂与聚丙烯腈纳米纤维通过化学反应将部分氰基转化为偕胺肟基团,制备一种改性的聚丙烯腈纳米纤维,并研究了该纤维对金属Pb2+的吸附性能.结果表明:改性的聚丙烯腈纳米纤维对Pb2+具有较好的吸附性能.  相似文献   

4.
采用静电纺丝技术, 以N,N-二甲基甲酰胺为溶剂, 聚丙烯腈为载体, 制备复合纳米纤维聚丙烯腈/纳米纤维素晶体/银, 并用Fourier变换红外光谱(FT-IR)、 透射电子显微镜(TEM)、 扫描电子显微镜(SEM)、 差热 热重分析(TG-DTG)和X射线衍射(XRD)等方法对复合纳米纤维的化学结构、 形貌、 热稳定性和晶体结构进行表征. 结果表明: 聚丙烯腈、 纳米纤维素晶体和银纳米粒子有机结合形成复合纳米纤维聚丙烯腈/纳米纤维素晶体/银; 复合纳米纤维的尺寸均匀, 平均直径为(214±12)nm, Ag纳米粒子在复合纳米纤维体系中均匀分布, 粒径为5~25 nm; 该复合纳米纤维对金黄色葡萄球菌和大肠杆菌的抗菌性能优异.  相似文献   

5.
为了提高聚丙烯腈(PAN)纤维的抗静电性能,以聚丙烯腈原丝为基料,N,N-二甲基乙酰胺(DMAC)为溶剂配制了聚丙烯腈纺丝液。然后通过超声波及机械搅拌的方法将不同质量分数的导电性能良好的纳米氧化锌(Zn O)分散在聚丙烯腈纺丝液中,配制成PAN/Zn O二元复合纺丝液,采用高压静电纺丝技术制备具有抗静电性能的PAN/Zn O纳米复合纤维。研究了PAN纺丝液、PAN/Zn O二元复合纺丝液的可纺性以及不同质量分数的纳米氧化锌对PAN/Zn O纳米复合纤维膜的结晶度及体积比电阻的影响。结果表明:纺丝液的可纺性较好,在体积分数为12%,纺丝电压为18k V,接收距离为15 cm,推进速度为0.000 5 mm/s的条件下进行静电纺丝,可以得到纤维直径均匀,纤维平行伸直度良好,表面光滑的PAN纳米纤维;随着纳米氧化锌质量分数的提高,PAN/Zn O纳米复合纤维表面变得粗糙,但结晶度无明显变化,体积比电阻减小,抗静电性能提高。  相似文献   

6.
利用盐酸羟胺对静电纺聚丙烯腈(PAN)纳米纤维膜进行偕胺肟化改性制备偕胺肟聚丙烯腈(AOPAN)纳米纤维.同时,利用AOPAN纳米纤维分别与Cu2+、Cd2+以及Fe3+进行配位反应,对其与金属离子配合性能进行比较研究,并利用Freundlich吸附模型对离子配合等温数据进行分析.结果表明,AOPAN纳米纤维的离子配合过程基本符合Freundlich吸附模型.在连续5次吸附、解吸实验后,3种金属离子的解吸率与首次解吸率相比均保持在80%以上,AOPAN纳米纤维具有良好的重复使用性能.  相似文献   

7.
利用静电纺丝制备聚丙烯腈/醋酸纤维素(PAN/CA)复合纳米纤维膜,并依次用0.05mol/L、0.1mol/L NaOH溶液对其进行水解处理,制得聚丙烯腈/再生纤维素(PAN/RC)复合纳米纤维膜.研究表明:纺丝液流量为0.5mL/h,所施加的电压为17kV,接收距离为18cm时,制得的PAN/CA复合纳米纤维直径更均匀,成丝形态更稳定.对PAN/CA复合纳米纤维膜及PAN/RC复合纳米纤维膜分别进行电镜扫描、红外光谱分析及静态接触角测定.结果表明:水解后的复合纳米纤维形态保持稳定,PAN/CA复合纳米纤维中的醋酸纤维素的酯基在碱处理后得到有效水解,复合纳米纤维膜的静态接触角由水解前的124.7°降低为10.1°,亲水性能得到大幅提升.  相似文献   

8.
采用静电纺丝制备刚果红-聚丙烯腈变色响应纳米纤维膜.通过电导率、变色响应、微观结构形貌、过滤及孔径等测试,分析不同质量分数的刚果红对纺丝性能、膜过滤性能的影响,并利用目视比色法,检测纳米纤维膜对HCl气体的变色响应情况.结果表明:纳米纤维膜的过滤性能不受刚果红质量分数的影响;当刚果红质量分数为0.5%时,聚丙烯腈纤维膜暴露在HCl气体中,5s内可明显由粉色变为蓝紫色;当纺丝时间为16 min时,纤维膜滤效为98.48%,滤阻为248.92Pa.  相似文献   

9.
利用静电纺丝法制备了聚丙烯腈(PAN)无序微纳米纤维膜,通过控制纺丝电压,溶液浓度和进料速率并借助接触角测量仪和扫描电子显微镜(SEM)对微纳米纤维材料的纤维形貌和润湿性进行了表征和研究.结果表明,对于PAN无序微纳米纤维膜,增大纺丝电压、减小进料速率、增大溶液浓度会使微纳米纤维膜的纤维直径增大;增大纺丝电压,减小进料速率会使微纳米纤维膜接触角增大;增大浓度,会使微纳米纤维膜接触角先增大后减小.通过控制变量法对PAN无序微纳米纤维膜分析得出,相对高的纺丝电压(14 k V)和相对低的进料速率(0.50m L·h-1)以及适中的PAN溶液浓度(12%wt)可以提升PAN无序微纳米纤维膜的疏水性.此外,均匀的PAN纤维膜的微纳米结构是影响它疏水性的重要因素.  相似文献   

10.
以聚多巴胺(PDA)为涂层剂,静电纺聚丙烯腈(PAN)纳米纤维膜为基体,制备了PDA/PAN纳米纤维复合材料,测试多巴胺涂层处理对复合材料的表面形貌、力学性能、孔径分布、纯水通量与乳化油截留率等相关性能的影响。研究结果表明:涂层后的静电纺纳米纤维断裂强度明显增加;膜纯水通量明显增大,在涂层液质量浓度为1 mg/mL时静电纺纳米纤维膜纯水通量最高达到14 656L/(m~2·h),较未改性纳米纤维膜增加63%;在涂层液质量浓度为1.5mg/mL时纤维膜获得了最小孔径,其乳化油截留率也达到最佳值(96.1%),同时可以保证高水通量和高乳化油截留率。  相似文献   

11.
通过静电纺丝制备了平均直径为350nm的聚丙烯腈(PAN)纳米纤维.将PAN纳米纤维分别在250,265和280℃温度下预氧化1h后,将它们在1 000℃下碳化得到碳纳米纤维.通过扫描电镜、红外光谱、差示扫描量热分析和X射线粉末衍射分析对PAN纳米纤维、预氧化后的纳米纤维及碳纳米纤维的形貌、热性能和化学结构进行了表征.结果表明,PAN纤维的最佳预氧化温度为280℃.在该温度预氧化后所得碳纤维的导电性最好,电导率为(13±0.58)S/cm.  相似文献   

12.
以静电纺丝法制备的聚丙烯腈(PAN)基碳纳米纤维为原料,铜箔为催化剂,采用化学气相沉积法合成了PAN@石墨烯核-壳纳米纤维.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱和电化学测试对样品的形貌、结构、组成以及电化学性质进行观察和分析.结果表明:化学气相沉积法能有效地制备PAN@石墨烯核-壳纳米纤维,...  相似文献   

13.
通过自密实性能试验和早期拉压强度试验,研究不同体积掺量的玄武岩纤维、聚丙烯腈纤维以及玄武岩-聚丙烯腈混杂纤维对自密实混凝土的流动性、间隙通过性以及7d劈裂抗拉强度和立方体抗压强度的影响.试验结果表明,随着纤维掺量的增加,自密实混凝土的流动性和间隙通过性会逐渐降低;混杂纤维对自密实混凝土抗拉强度的提升效果较抗压强度更为显著,当玄武岩纤维和聚丙烯腈纤维的掺量分别为0.20%和0.12%时,劈裂抗拉强度的增幅最大,较素自密实混凝土提高了87.5%.  相似文献   

14.
本文通过接枝共聚合方法合成了多壁碳纳米管/聚丙烯腈(MWCNTs/PAN)接枝共聚物,然后用静电纺丝装置对MWCNTs/PAN的二甲基甲酰胺(DMF)溶液进行电纺。重点研究了反应物配比、浓度、电压参数对电纺MWCNTs/PAN纳米纤维的影响。讨论了纳米纤维平均直径及直径分布的影响因素。  相似文献   

15.
近20年来,静电纺丝技术得到了快速发展和应用; 不同材料的电纺纳米纤维(包括聚合物基、金属基、陶瓷基、碳基及其复合材料等)已在能源、环境、生物医学和国防军工等领域得到了泛应用.通常,静电纺丝技术需将聚合物或聚合物前驱体原料溶解于溶剂中或者加热熔融进行电纺加工.然而,芳杂环高性能聚合物(如聚酰亚胺、芳香聚酰胺、聚苯等)由于其主链上的刚性环状结构,既难溶解于普通有机溶剂,也难加热熔融,没有流动性,故难以通过静电纺技术制备其纳米纤维.为了解决这个难题,研究人员努力探索了许多间接方法和途径来制备电纺高性能聚合物纳米纤维,并取得了突破性进展.如通过电纺前驱体法大规模地制备聚酰亚胺纳米纤维、利用热致重排进行分子转化制备了电纺聚苯并二噁唑纳米纤维、利用模板电纺法制备了聚苯基和聚吡咙基纳米纤维等.该文详细介绍了通过静电纺丝技术制备高性能聚合物纳米纤维的最新进展,具体包括聚酰亚胺、聚苯并咪唑、聚苯撑苯并二噁唑、芳香聚酰胺、聚苯、聚吡咙等芳杂环聚合物纳米纤维.此外,由于聚丙烯腈是制备碳纤维的重要前驱体,也对电纺聚丙烯腈纳米纤维的制备做了简要介绍.  相似文献   

16.
利用静电纺丝和胺肟化改性制备胺肟聚丙烯腈(AOPAN)纳米纤维,采用原子转移自由基聚合(ATRP)的方法在AOPAN纳米纤维上接枝丙烯酸单体得到AOPAN-AA纳米纤维.通过傅里叶红外光谱(FTIR)分析AOPAN-AA纳米纤维表面化学结构.采用电感耦合等离子体发射光谱仪(ICP-AES)测试溶液中金属离子的浓度,以此研究AOPAN-AA纳米纤维的金属离子吸附性能.结果表明:AOPAN-AA纳米纤维对Fe~(3+)、Cu~(2+)、Cd~(2+)、Cr~(3+)的饱和吸附量分别为5.36、2.81、1.36和1.18mmol/g,证明其金属离子吸附性能显著,并且吸附过程基本符合Langmuir吸附模型.  相似文献   

17.
以聚丙烯腈(polyacrylonitrile,PAN)和纳米纤维素晶体(cellulose nanocrystal,CNC)为原料,采用静电纺丝法制备纳米纤维素/聚丙烯腈复合空气滤膜.利用扫描电子显微镜,接触角,热重分析仪等测试方法对所制备的样品进行表征.静电纺薄膜的纤维直径平均(119±12)nm,具有多孔结构. CNC的添加提高了薄膜的亲水性能.红外分析证明了体系中CNC的存在,热重分析证明了薄膜具有一定的热稳定性.过滤性能测试结果表明该空气滤膜具有高过滤效率和低压降.添加纳米纤维素能够有效地改善聚丙烯腈空气滤膜的疏水性能.此外,纳米纤维素具有高强度和弹性模量,能够有效地提高空气滤膜的强度,从而增加空气滤膜的使用寿命.  相似文献   

18.
为了深入分析叶片结构对沥青混合料加热效果的影响,提高热风式沥青路面养护车的加热效率,文章建立了2种典型叶片结构的沥青混合料加热滚筒三维分析模型,采用有限容积法,利用混合模型、滑移网格模型、标准κ-ε双方程模型和传热模型对沥青混合料的加热过程进行数值模拟,得到滚筒出风口温度变化曲线与滚筒内温度场分布云图,分析了叶片结构、滚筒转速对沥青混合料加热效率的影响。研究结果表明:滚筒转速对L形叶片结构加热效率影响较大,原因是转速对提料叶片形成料帘的影响较大,转速为7r/min时,加热效率最高,用时最短为1 670s,同时混合料温差最小,加热均匀性最好;滚筒转速对螺旋结构叶片加热效率影响不大,为降低能耗,转速为5~6r/min最佳。  相似文献   

19.
采用静电纺丝技术制备了聚丙烯腈/碳纳米管(PAN/CNT)复合纳米纤维膜,利用扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱仪和拉曼光谱仪对CNT质量分数不同的PAN/CNT复合纳米纤维膜进行了表征和分析,并利用紫外可见近红外光谱仪和配备有积分球的傅里叶变换红外光谱仪对PAN/CNT复合纳米纤维膜在可见光和红外光段的辐射特性进行了测试和考察。结果表明:静电纺丝技术可制备CNT分布均匀的PAN/CNT复合纳米纤维膜;相较于纯PAN纳米纤维膜,PAN/CNT复合纳米纤维膜的可见光谱和红外光谱吸收率显著增强,且随着CNT质量分数的增加,复合纳米纤维膜的红外光谱吸收率呈增大趋势。研究结果为PAN/CNT复合纳米纤维膜在太阳能光热转化和中红外辐射领域的进一步应用提供了理论依据。  相似文献   

20.
采用共轭静电纺丝法制备聚丙烯腈(PAN)纳米纤维纱线,并在不同温度下将PAN纳米纤维碳化得到碳纳米纤维纱线。以KMnO 4为锰源,通过水热合成法在碳纳米纤维纱线上原位生长纳米二氧化锰(MnO 2),形成MnO 2/C复合纳米纤维纱线,分别采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FE-SEM)、数字万用表对碳纳米纤维纱线和MnO 2/C复合纳米纤维纱线的化学组成、表观形貌、电学性能等进行表征,并分析碳化温度对碳纳米纤维纱线的形貌和电学性能的影响,以及水热反应中盐酸浓度对纳米MnO 2形貌和MnO 2/C复合纳米纤维纱线的影响。结果表明:碳化温度越高,得到的纱线表面越光洁,石墨化程度越高,电学性能也越好,1000℃碳化工艺得到的碳纳米纤维纱线电导率最高,为31.5 S/cm;与MnO 2复合后的碳纳米纤维纱线电导率大幅下降,当盐酸与高锰酸钾摩尔浓度比为4∶1时得到的复合纳米纤维纱线的电导率最高,为0.1200 S/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号