首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
拉伸性能指标是金属材料的研制、生产和验收过程中最主要的测试项目之一,拉伸试验测定的各项强度性能和延性性能指标是反映金属材料力学性能的重要参数。探讨了金属材料室温拉伸试验断后伸长的概念及修约。  相似文献   

2.
随着汽车行业的快速发展,对于汽车板产品的需求也越来越大,如何确保准确地检测汽车板产品的物理性能已经成为我们需要面对的新难题。室温单向静拉伸试验可以揭示金属材料在室温环境中静载荷作用下常见的力学行为,其中力学性能作为金属材料的最基本性能指标之一,可以为产品的生产与测评提供可靠的依据。汽车板产品在卷取成卷时会产生弯曲挠度,从而对材料力学性能的检测产生影响。在全自动拉伸试验机上对目标产品进行了力学性能测试,总结得出:弯曲挠度会使屈服强度的实验结果偏低,但对抗拉强度和延伸率影响不大。  相似文献   

3.
邱继亮 《科技资讯》2011,(35):80-80
在金属材料拉伸试验过程中,需要进行一系列的操作,受到多种因素影响。首先需要明确有哪些影响因素,对这些影响因素的原因进行分析,并据此制定有关规程,严格控制试验操作过程,如此才能够获得精确的检测结果。评定与检测金属材料质量时通常采取金属力学性能试验,其中的金属材料拉伸试验具有非常广泛的应用范围。对于金属材料而言,拉伸性能是其在研制、检验以及生产过程当中需要重点检测的项目之一,检测过程中所得出的塑性性能指标以及各项强度指标均是体现金属材料性能的关键参数。但是实验过程中影响检测结果数值真实性和准确性的因素有很多。在本文中,重点论述了影响金属材料拉伸试验检测结果的主要因素。  相似文献   

4.
正前言金属材料的常温拉伸试验是用拉伸力将试样拉伸,一般拉至试样断裂以测定其力学性能,其所获得的技术指标是评价材料性能优劣、改进生产工艺以及指导设计和选材的重要依据。在检验过程中,由于误差的存在,检测结果必然存在着测量不确定度。对金属材料拉伸性能各项指标的测量不确定度进行评定有着重要意义。屈服强度是金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点。屈服强度分为上屈  相似文献   

5.
本文着重针对伸长率问题,将从金属材料拉伸破坏特征、断后标距测定、试验结果的修正以及判定等方面作较全面的叙述,以提高冷轧扭钢筋拉伸试验的有效率和结果的准确性。  相似文献   

6.
金属材料拉伸试验是测量金属强度值的常用方法,文章通过分析金属材料拉伸试验的应力-应变曲线图,阐述了试样在不同的阶段的所体现的特征,解释了曲线图的深层次含义。  相似文献   

7.
提出了一种新的损伤定义及测量方法,确定了金属材料的损伤临界值,并进一步证明了金属材料的损伤就是金属材料的塑性变化。还导出了参量测量简便易行的静拉伸损伤计算式,给出了静拉伸损伤测量结果。  相似文献   

8.
采用标准拉伸试验方法和小冲杆微试样试验技术测定钛材在室温下的蠕变性能,证实工业纯钛在室温下确实存在蠕变现象,但蠕变仅在应力足够大时发生。采用塑性薄膜伸张模型,将小冲杆试验测得的试样中心点挠度值δ转化为表征蠕变应变εsp和表征蠕变应力σsp,计算得到了与传统拉伸蠕变试验相应的蠕变应力一蠕变速率关系,比较结果说明两种测试方法获得的纯钛在室温下的蠕变速率较为接近。  相似文献   

9.
刘丽霞 《科技信息》2011,(20):349-350
根据JJF1059-1999《测量不确定度评定与表示》和GB/T228-2002《金属材料室温拉伸试验方法》的要求,对不锈钢无缝钢管1Cr18Ni9Ti的力学性能三项参数(规定非比例延伸强度RP0.2、抗拉强度Rm及断后伸长率A)进行了测量不确定度的评定,算出了95%置信度下该材料三项参数的不确定度。  相似文献   

10.
为研究温度和加载影响的离子型中间膜的拉伸力学性能,在低应变率范围内对其进行了--40 ℃~80℃的单调拉伸试验以及室温下的循环加卸载拉伸试验.基于试验结果,确定了离子型中间膜的力学性能特征指标.结果 表明,随着应变率的升高和温度的降低,其强度普遍提高,但极限应变有所降低;断后试件有约80%的不可恢复变形;循环加卸载拉伸...  相似文献   

11.
金属的拉伸性能既是评定金属材料的重要指标,又是机械制造和工程设计、选材的主要依据.该研究利用CAD软件设计和数控电火花线切割车床制备了适合金属材料工程专业课程实验教学、毕业设计实验和科研项目实验用的非标准拉伸夹具和试样,以解决标准试样加工制备困难和成本高的问题.所设计的非标准拉伸试样外形尺寸参考了标准拉伸试样,有效避免了试样由于局部应力集中发生破坏导致实验结果不准确的情况发生.制备得到的非标准拉伸试样夹具强度达到了实验设计要求,夹具在使用过程中没有发生屈服和变形,并且夹具和试样之间的配合精度达到了我国金属拉伸试验的标准.使用本研究制备的夹具和试样所测得的不锈钢样品性能与标准样品具有可比性,夹具和试样在教学和研究实验中具有实用性.  相似文献   

12.
本文作者通过淬火回火硬度试验,室温和高温拉伸冲击试验以及金相和电镜组织观察,研究了V,Mo,Ni,Nb,Co和B等合金元素对热作模具钢组织和性能的影响.结果表明:适宜的合金元素含量对钢的室温和高温强韧性产生很好的作用,所得结果对于热作模具钢新钢种开发有重要参考价值.  相似文献   

13.
为快速、准确地检测金属材料中的裂纹,避免严重事故和重大经济损失,介绍了一种基于光纤布拉格光栅传感器的金属材料裂纹检测方法。该方法利用光纤布拉格光栅的高灵敏度和优良的光学传感特性,将光纤布拉格光栅传感器通过胶封装方式粘贴在含预制裂纹的金属试件上,通过拉伸试验获得金属材料扩展过程中的应力-应变关系,发现在裂纹扩展路径上,裂纹近端产生的应变小于远端产生的应变,即裂纹逐渐向传感器远端的方向扩展,从而实现了对金属材料裂纹扩展的实时监测和定位。  相似文献   

14.
对冷锻模具材料高速基体钢进行了室温下的单轴静态拉伸试验和应变控制单轴对称拉压低周疲劳试验,获得了静态拉伸力学性能和低周疲劳性能参数.通过对试验数据进行拟合,得到了高速基体钢材料在室温下静态单调拉伸应力-应变关系、循环应力-应变关系以及循环应变-寿命曲线.试验结果表明,该模具材料在本试验控制的循环应变幅范围内发生了循环软化,疲劳断裂之前未观察到明显的应力饱和现象.以控制应变幅为1.5%的试样为例,对材料的低周疲劳行为特性进行了分析.材料的循环应力响应分为明显软化,软化效应减弱和瞬时断裂3个阶段.  相似文献   

15.
采用自行设计带有小型加温装置的改进的分离式Hopkinson拉杆装置测试了金属材料在高温条件下的动态拉伸性能,并用修正的Johnson-Cook模型作为材料的本构关系,提出了一种拟合金属材料在弹性及塑性阶段应变率及温度相关的损伤模型,并拟合出参数.结果表明:改进装置能够精确控制加温速率及温度,减小杆端软化的影响,测试结果相对误差小于1.5%;金属材料304不锈钢的屈服应力及断裂应变具有明显的正应变率效应的温度软化效应,但材料弹性模量具有负应变率效应和负温度效应;在293—625K之间计算结果和试验结果吻合较好,表明可用这种方法测试及估算材料高温动态力学性能,并用于工程分析.  相似文献   

16.
罗德参数、软性系数和应力三维度是研究金属材料变形、破坏时常用的应力状态参数,分析从三向压缩到三向拉伸不同应力状态下各参数值的变化,得出:应力三维度值从小向大有规律地变化,罗德参数和软性系数则不能分析裂纹体、无裂纹体金属材料断裂破坏的试验结果;同时认识到构件中,体积变形较大、形状变形较小处是材料发生脆断、准脆断的断裂萌生点,此危险点正是应力三维度有较大值处。  相似文献   

17.
通过单向拉伸试验,对比研究平纹叠层SiC/SiC复合材料在室温和高温(1 200℃)环境下的宏观力学特性,并采用扫描电镜对试验件断口进行观测,以分析其微观损伤模式和破坏机理.结果表明:平纹叠层SiC/SiC复合材料的室温和高温拉伸应力-应变行为均表现为非线性特征,具有较高的轴向拉伸基体开裂应力;两者拉伸强度相差不大,但高温下的断裂应变比室温下的高.从宏观断口分析可知,两者均呈现韧性断裂,但纤维拔出长度和断口平齐程度有所不同.材料内部产生的基体裂纹大部分与加载方向垂直;断面上经向纤维束发生纵向拉伸断裂破坏,内部存在严重的界面脱粘损伤以及纬向纤维束发生轴向劈裂破坏是材料在室温和高温下的拉伸破坏机理.高温下由于纤维与基体间的界面层在一定程度上被高温氧化而退化失效,使界面结合变弱和界面滑移力降低,从而产生较长的纤维拔出长度,所以高温下材料具有较高的断裂韧性.  相似文献   

18.
杨晓红 《科技资讯》2008,(33):50-50
同一种材料在不同的成形工艺条件下其成形性能各不相同,本文通过弯曲、拉伸、热疲劳、热成形、超塑成形及光学显微试验等试验方法,分析了几种典型金属材料在不同温度下成形性能的高低,从而确定其合理的成形参数。  相似文献   

19.
本文讨论了用“平面压缩”试验法测定金属材料变形抗力时的一些影响因素,提出了简化的试验步骤,并用有限单元法对平面弹塑性压缩过程进行了理论计算。结果表明:可以通过简单拉伸试验取得必要的数据,用理论计算方法求得不同压下率时计料的变形抗力。  相似文献   

20.
本文报告了金属材料试棒拉伸试验中发现的“断裂磁场”,解释了地球断裂磁场的某些现象,进而分析百慕大三角的异磁现象可能是地质断层引起的断裂磁场,从而揭示了“死三角区”引力之谜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号