首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
设F是特征不为2,3的域,T2(F)是F上2×2上三角矩阵代数。T是T2(F)中的所有立方幂等矩阵构成的子集。Φ(F)记所有从T2(F)到自身的单射φ的集合且φ满足:由A-λB∈T可以推出φ(A)-λφ(B)∈T.刻划了Φ(F)中的形式。  相似文献   

2.
特征2矩阵空间上幂等保持映射(英文)   总被引:1,自引:1,他引:0  
设F是除F2={0,1}之外的特征是2的域,Mn(F)是域F上的n×n 矩阵空间,Pn(F)是Mn(F)的包含所有n×n 幂等矩阵的子集.定义Фn(F)是从Mn(F)到Mn(F)满足A-λB∈Pn(F)蕴涵着φ(A)-λφ(B)∈Pn(F)对所有A,B∈Mn(F)及λ∈F成立的映射的集合.当n≥3时,集合{φ∈Фn(F)1(E) 可逆阵T∈Mn(F)使得Tφ(Ekk)T-1=Ekk,k=1,…,n}被刻画,丰富了相应文献的结果.  相似文献   

3.
讨论2 X2对称矩阵空间S2到2×2全矩阵空间M2上保持立方幂等的映射形式.设φ:S2→M2,如果对任意矩阵A,B∈S2及数λ∈C有A-λB为立方幂等阵当且仅φ(A)-λφ(B)为立方幂等阵,则存在可逆阵P∈M2及数ε∈{1,-1}使得对任意的A∈S2有φ(A)=εPAP-1.  相似文献   

4.
设C是复数域,T2(C)是C上2×2上三角矩阵代数.Tk2(C)记T2(C)中的所有k-幂等矩阵构成的子集,这里k≥2.若映射φ满足:由A-λB∈Tk2(C)可以推出φ(A)-λφ(B)∈Tk2(C),则称φ是保k幂等的.用Ф(C)记所有从T2(C)到自身的上述单射φ的集合.给出Ф(C)中算子的形式.  相似文献   

5.
2×2矩阵代数保持幂等的映射   总被引:2,自引:0,他引:2  
令M2是特征为2且元素个数大于2的域上的2×2矩阵代数.令P2记M2中幂等阵全体的集合,设φ是从M2到M2的单映射且满足由A-λB∈P2可以推出φ(A)-λφ(B)∈P2.则φ的形式是φ(A)=TAT-1 A∈M2或者φ(A)=TAtT-1 A∈M2其中T是M2中的某个非奇异阵.  相似文献   

6.
二阶特殊矩阵空间保幂等的映射   总被引:4,自引:2,他引:2  
设F1是特征不为2、3、5的域,F2是特征不为2的域,M2(F1)记F1上2×2全矩阵空间,S2(F1)记F1上2×2对称矩阵空间,T2(F2)是F2上2×2上三角矩阵空间.确定了从S2(F1)到M2(F1)以及从T2(F2)到T2(F2)保幂等的映射形式.  相似文献   

7.
设F1 是 特 征 不 为2、3、5的 域 ,F2是 特 征 不 为2的 域 ,M2(F1)记F1上2×2 全 矩 阵 空间,S2(F1)记F1上2×2 对称矩阵空间,T2(F2)是F2上2×2 上三角矩阵空间.确定了从S2(F1)到M2(F1)以及从T2(F2)到T2(F2)保幂等的映射形式.  相似文献   

8.
域上迹零矩阵空间上的线性秩1保持(英文)   总被引:1,自引:1,他引:0  
设F是域,m≥2是正整数,Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间.若线性映射φ:slm(F)→slm(F) 满足φ(sl1m(F))(-C)sl1m(F),则称其为线性秩1保持,其中sl1m(F)定义slm(F)的包含所有秩1矩阵的子集.通过使用数学归纳法证明了:φ:slm(F)→slm(F)是可逆的线性秩l保持的充要条件是存在c ∈F* 和可逆的M ∈Mm(F)使得φ(X)=cMXM-1,(A)X∈slm(F)或φ(X)=cMXT M-1,(A)X ∈slm(F).  相似文献   

9.
设F是一个特征不为2及3的域,Mn(F)表示F上n×n 矩阵全体,CLn(F)记F上一般线性群,N-1(F)表示从Mn(F)到Mm(F)的保矩阵逆的全部加法映射的集合.以矩阵逆作为不变量,研究不同矩阵空间上加法保持映射的形式,并采用直接刻画基底的矩阵逆保持算子形式的办法,刻画了N-1 (F)中元素的形式.从结果可看出当,n=2时的映射形式要比n≥3时的映射形式复杂得多.  相似文献   

10.
设F是特征不为2的任意域,Mn(F)表示F上所有n×n矩阵所组成的空间.对任意A∈Mn(F),若存在λ∈F和幂等阵M∈Mn(F)使得A=λI+M,则称A为I-幂等矩阵.设φ:Mn(F)→Mn(F)为线性映射,若当A为I-幂等矩阵时,φ(A)也为I-幂等矩阵,则称φ保持I-幂等矩阵.刻画Mn(F)上保持I-幂等矩阵的线性...  相似文献   

11.
设F是一个域,Mn(F)是域F上的n×n矩阵空间,Sn(F)是Mn(F)中对称矩阵的全体.对Mn(F)中的任一线性子空间V,记IV为V中所有幂等元的集合.设V∈{Sn(F),Mn(F)},对任意的A,B∈V和λ∈F,如果A-λB幂等当且仅当Φ(A)-λΦ(B)幂等,则称映射Φ:V→V是保幂等性的.证明了:如果F的特征为0,Φ:Sn(F)→Sn(F),则Φ是一个保幂性映射当且仅当存在Mn(F)中的一个可逆阵P使得对Sn(F)中的每一个A都有Φ(A)=PAP-1,其中P满足PtP=aIn,a为F中的一个非零元.  相似文献   

12.
F是任意的一个域,S2(F)表示F上2×2对称矩阵代数,刻画了S2(F)到自身满足f(A)f(B)=f(B)f(A)当且仅当AB=BA的加法满射f的形式.  相似文献   

13.
域上2×2对称矩阵空间的加法秩保持   总被引:5,自引:2,他引:3  
令F是一个域,n是一个正整数.Sn(F)记F上所有n×n对称矩阵的集合.若一个算子fSn(F)→Sn(F)满足对任意的A,B∈Sn(F)都有f(A+B)=f(A)+f(B),则称之为加法的;若对任意的X∈Sn(F)都有rankf(X)=rankX,则称f为Sn(F)上的秩保持.当n≥3及F为任意域时,Sn(F)上的所有加法秩保持已被作者在[4]中确定.这里,对于任意的F,S2(F)上所有的满足对每个X∈S2(F)\{xD12|x∈F\{0}}都有rankf(X)=rankX的加法算子的一般形式被确定,由此S2(F)上的所有加法秩保持被刻划.  相似文献   

14.
域上保秩1矩阵映射   总被引:1,自引:0,他引:1  
设K是域,m,n是不小于2的整数,Mmn(K)表示K上m×n阶矩阵全体所成集合.设Φij(i=1,2,…,m,j=1,2,…,n)是K上的映射,定义K上由Φij导出的映射Φ如下:Φ:[aij]|→[Φij(aij)],[aij]∈Mmn(K).若Φ将Mmn(K)中的秩1矩阵都映成秩1矩阵,则称Φ是保秩1的,将刻画这种映射的形式.  相似文献   

15.
设F是一个元素个数大于2的域,S2(F)是F上的2×2对称矩阵空间.对任意的A,B ∈S2(F)和λ∈F,如果A-λB是对合当且仅当Ф(A)-λФ(B)是对合,则称映射Ф:S2(F)→S2(F)是保对合关系的.当F的特征不为2时刻画了Ф的形式.  相似文献   

16.
Fm×n表示域F上所有m×n矩阵的集合.R(A)和Nr(A)分别表示矩阵A∈Fm×n的列空间和核空间.若m=n,用Ind(A)定义矩阵A的指标.给出了求一类约束矩阵方程WAWXWBW=D,R(X)R((AW)k1),Nr(X)Nr((WB)k2)的唯一解的Cramer法则,其中A∈Fm×n,W∈Fn×m,B∈Fp×q,W∈Fq×p,D∈Fn×p,R(D)R((WA)k2),Nr(D)Nr((BWk1),k1=Ind(AW),k2=Ind(WA),k1=Ind(BW),k2=Ind(WB).这将[15-17]中的结果从复数域推广到任意域.  相似文献   

17.
在保持问题的研究中,2?2阶矩阵空间的研究方法具有一定的特殊性.设F是域,2M(F)记为F上2阶全矩阵空间,刻画了2M(F)上保次交换的线性映射的形式.  相似文献   

18.
设F是一个特征2的域,n≥2,Mn(F)和Sn(F)分别为F上的n×n全矩阵空间与对称矩阵空间.刻画了Sn(F)到Mn(F)上的保矩阵M-P逆的线性单射,由此又得到了Sn(F)到自身的保矩阵M-P逆的可逆的线性算子的形式,最后还刻画了Mn(F)到自身的保M-P逆的线性算子.  相似文献   

19.
设R是一个含有单位元1的交换整环,M(R)是R上的n×n矩阵模,用Pn(R)记Mn(R)中所有幂等阵构成的集合.若线性映射f:(R)→Mm(R)满足f(P相似文献   

20.
设F是一个元素个数大于4的域,n≥2是一个正整数.令Mn(F)和Tn(F)分别是F上n×n全矩阵空间和上三角矩阵空间.首先刻画从Tn(F)到Mn(F)的保矩阵群逆的所有线性单射,由此Tn(F)到自身的所有保矩阵群逆的线性双射被刻画.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号