首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace calls state supervenience. I argue that state supervenience is not defensible as a rationality constraint for Everettian agents unless we already invoke probabilistic notions.  相似文献   

2.
I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of quantum mechanics. I then consider a range of existing Everettian approaches to the probability problem and show that they do not succeed in overcoming this incoherence.  相似文献   

3.
Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from ‘probability’ without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular rationality principle.The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future Everettian measurement outcome is subjective uncertainty. I argue that subjective uncertainty is not available to the Everettian, but I offer an alternative: we can justify the Everettian application of decision theory on the basis that an Everettian should care about all her future branches. The probabilities appearing in the decision-theoretic representation theorem can then be interpreted as the degrees to which the rational agent cares about each future branch. This reinterpretation, however, reduces the intuitive plausibility of one of the Deutsch–Wallace axioms (measurement neutrality).  相似文献   

4.
Objectiveprobability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett's seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and to a novel explanation of why a principle of indifference does not apply to self-location uncertainty for a post-measurement, pre-observation subject, just as Sebens and Carroll claim. Their Epistemic Separability Principle is shown to arise out of this explanation and the derivation of the Born rule for Everettian theory is thereby put on a firmer footing.  相似文献   

5.
The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from empirical data rather than decision theoretic arguments, avoids the problem faced by Deutsch and Wallace and is empirically viable. However, there is good reason to cast doubts on its scientific value.  相似文献   

6.
We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the non-probabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability rule in the many worlds theory. Our conclusion is that the many worlds theory fails to account for the probabilistic statements of standard (collapse) quantum mechanics.  相似文献   

7.
Claims that the standard procedure for testing scientific theories is inapplicable to Everettian quantum theory, and hence that the theory is untestable, are due to misconceptions about probability and about the logic of experimental testing. Refuting those claims by correcting those misconceptions leads to an improved theory of scientific methodology (based on Popper׳s) and testing, which allows various simplifications, notably the elimination of everything probabilistic from the methodology (‘Bayesian’ credences) and from fundamental physics (stochastic processes).  相似文献   

8.
I outline an argument for a subjective Bayesian interpretation of quantum probabilities as degrees of belief distributed subject to consistency constraints on a quantum rather than a classical event space. I show that the projection postulate of quantum mechanics can be understood as a noncommutative generalization of the classical Bayesian rule for updating an initial probability distribution on new information, and I contrast the Bayesian interpretation of quantum probabilities sketched here with an alternative approach defended by Chris Fuchs.  相似文献   

9.
John Norton's The Material Theory of Induction bristles with fresh insights and provocative ideas that provide a much needed stimulus to a stodgy if not moribund field. I use quantum mechanics (QM) as a medium for exploring some of these ideas. First, I note that QM offers more predictability than Newtonian mechanics for the Norton dome and other cases where classical determinism falters. But this ability of QM to partially cure the ills of classical determinism depends on facts about the quantum Hamiltonian operator that vary from case to case, providing an illustration of Norton's theme of the importance of contingent facts for inductive reasoning. Second, I agree with Norton that Bayesianism as developed for classical probability theory does not constitute a universal inference machine, and I use QM to explain the sense in which this is so. But at the same time I defend a brand of quantum Bayesianism as providing an illuminating account of how physicists' reasoning about quantum events. Third, I argue that if the probabilities induced by quantum states are regarded as objective chances then there are strong reasons to think that fair infinite lotteries are impossible in a quantum world.  相似文献   

10.
Typical worlds     
Hugh Everett III presented pure wave mechanics, sometimes referred to as the many-worlds interpretation, as a solution to the quantum measurement problem. While pure wave mechanics is an objectively deterministic physical theory with no probabilities, Everett sought to show how the theory might be understood as making the standard quantum statistical predictions as appearances to observers who were themselves described by the theory. We will consider his argument and how it depends on a particular notion of branch typicality. We will also consider responses to Everett and the relationship between typicality and probability. The suggestion will be that pure wave mechanics requires a number of significant auxiliary assumptions in order to make anything like the standard quantum predictions.  相似文献   

11.
The basic notion of an objective probability is that of a probability determined by the physical structure of the world. On this understanding, there are subjective credences that do not correspond to objective probabilities, such as credences concerning rival physical theories. The main question for objective probabilities is how they are determined by the physical structure.In this paper, I survey three ways of understanding objective probability: stochastic dynamics, humean chances, and deterministic chances (typicality). The first is the obvious way to understand the probabilities of quantum mechanics via a collapse theory such as GRW, the last is the way to understand the probabilities in the context of a deterministic theory such as Bohmian mechanics. Humean chances provide a more abstract and general account of chances locutions that are independent of dynamical considerations.  相似文献   

12.
Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the ‘apparent’ collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.  相似文献   

13.
14.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.  相似文献   

15.
The long history of ergodic and quasi-ergodic hypotheses provides the best example of the attempt to supply non-probabilistic justifications for the use of statistical mechanics in describing mechanical systems. In this paper we reverse the terms of the problem. We aim to show that accepting a probabilistic foundation of elementary particle statistics dispenses with the need to resort to ambiguous non-probabilistic notions like that of (in)distinguishability. In the quantum case, starting from suitable probability conditions, it is possible to deduce elementary particle statistics in a unified way. Following our approach Maxwell-Boltzmann statistics can also be deduced, and this deduction clarifies its status.Thus our primary aim in this paper is to give a mathematically rigorous deduction of the probability of a state with given energy for a perfect gas in statistical equilibrium; that is, a deduction of the equilibrium distribution for a perfect gas. A crucial step in this deduction is the statement of a unified statistical theory based on clearly formulated probability conditions from which the particle statistics follows. We believe that such a deduction represents an important improvement in elementary particle statistics, and a step towards a probabilistic foundation of statistical mechanics.In this Part I we first present some history: we recall some results of Boltzmann and Brillouin that go in the direction we will follow. Then we present a number of probability results we shall use in Part II. Finally, we state a notion of entropy referring to probability distributions, and give a natural solution to Gibbs' paradox.  相似文献   

16.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.  相似文献   

17.
We defend the many-worlds interpretation of quantum mechanics (MWI) against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning symmetry and locality. We also show how a structurally similar proof of the Born rule is available for collapse theories. We conclude by comparing our account to the recent account offered by Sebens and Carroll.  相似文献   

18.
In spite of the increasing attention that quantum chaos has received from physicists in recent times, when the subject is considered from a conceptual viewpoint the usual opinion is that there is some kind of conflict between quantum mechanics and chaos. In this paper we follow the program of Belot and Earman, who propose to analyze the problem of quantum chaos as a particular case of the classical limit of quantum mechanics. In particular, we address the problem on the basis of our account of the classical limit, which in turn is grounded on the self-induced approach to decoherence. This strategy allows us to identify the conditions that a quantum system must satisfy to lead to non-integrability and to mixing in the classical limit.  相似文献   

19.
Meyer originally raised the question of whether non-contextual hidden variable models can, despite the Kochen–Specker theorem, simulate the predictions of quantum mechanics to within any fixed finite experimental precision (Phys. Rev. Lett. 83 (1999) 3751). Meyer's result was extended by Kent (Phys. Rev. Lett. 83 (1999) 3755). Clifton and Kent later presented constructions of non-contextual hidden variable theories which, they argued, indeed simulate quantum mechanics in this way (Proc. Roy. Soc. Lond. A 456 (2000) 2101).These arguments have evoked some controversy. Among other things, it has been suggested that the Clifton–Kent models do not in fact reproduce correctly the predictions of quantum mechanics, even when finite precision is taken into account. It has also been suggested that careful analysis of the notion of contextuality in the context of finite precision measurement motivates definitions which imply that the Clifton–Kent models are in fact contextual. Several critics have also argued that the issue can be definitively resolved by experimental tests of the Kochen–Specker theorem or experimental demonstrations of the contextuality of Nature.One aim of this paper is to respond to and rebut criticisms of the Meyer–Clifton–Kent papers. We thus elaborate in a little more detail how the Clifton–Kent models can reproduce the predictions of quantum mechanics to arbitrary precision. We analyse in more detail the relationship between classicality, finite precision measurement and contextuality, and defend the claims that the Clifton–Kent models are both essentially classical and non-contextual. We also examine in more detail the senses in which a theory can be said to be contextual or non-contextual, and in which an experiment can be said to provide evidence on the point. In particular, we criticise the suggestion that a decisive experimental verification of contextuality is possible, arguing that the idea rests on a conceptual confusion.  相似文献   

20.
The fact that there exist in nature thoroughly deterministic systems whose future behavior cannot be predicted, no matter how advanced or fined-tune our cognitive and technical abilities turn out to be, has been well established over the last decades or so, essentially in the light of two different theoretical frameworks, namely chaos theory and (some deterministic interpretation of) quantum mechanics. The prime objective of this paper is to show that there actually exists an alternative strategy to ground the divorce between determinism and predictability, a way that is older than—and conceptually independent from—chaos theory and quantum mechanics, and which has not received much attention in the recent philosophical literature about determinism. This forgotten strategy—embedded in the doctrine called “emergent evolutionism”—is nonetheless far from being a mere historical curiosity that should only draw the attention of philosophers out of their concern for comprehensiveness. It has been indeed recently revived in the works of respected scientists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号