共查询到18条相似文献,搜索用时 78 毫秒
1.
为了降低过程干扰造成的生产过程波动,研究了一种基于径向基(RBF)神经网络预测的MMSE控制器.首先,采用基于k-聚类学习算法的3层优化径向基网络结构,预测过程干扰时间序列,在此基础上设计MMSE控制器,将其作为EPC过程调整策略,应用于一个化工生产过程的SPC与EPC集成控制系统.然后,采用SPC控制图监测经上述MMSE控制器调整后过程输出并与传统MMSE控制器调整后的过程输出作比较.结果表明,径向基(RBF)神经网络可提高过程干扰预测精度,改进MMSE控制器的控制性能,减小过程波动,提升SPC与EPC集成控制的能力. 相似文献
2.
基于RBF神经网络的股市建模与预测 总被引:21,自引:0,他引:21
提出一种基于RBF神经网络的股市预测建模方法,并采用递阶遗传算法训练RBF网络的参数、权重和结构,对上证综指和个股(伊利股份)的建模与预测结果表明,该训练方法使RBF神经网络具有很强的学习与泛化能力,它在股市这样一个复杂的非线性随机系统建模中具有很高应用价值。 相似文献
3.
基于RBF神经网络的结构动力响应预测 总被引:1,自引:0,他引:1
介绍了径向基函数(RBF)神经网络学习速度快,动态仿真性强,具有较强的输入输出映射功能和全局最优逼近的结构特点.针对快速预测结构动力响应有助于克服结构振动控制中时滞效应的特点及BP网络存在的问题,应用RBF网络对结构的位移、加速度进行了预测,并采用BP网络作对比研究.仿真结果表明RBF神经网络训练速度快,精度高,可及时为主动控制建筑结构响应提供较为准确的优化性能指标,从而为实现在线实时控制结构响应提供优良的保证. 相似文献
4.
采用遗传算法对RBF网络的隐层节点中心值和宽度进行优化,用梯度下降法求出权值.将其应用于降水量预测中,取得较为满意的结果,证明该算法的有效性. 相似文献
5.
汽车尾气排放造成严重的环境污染问题。SCR技术被认定为处理柴油车尾气排放的最佳方式,但SCR系统具有非线性、大时滞等特点,传统控制方法控制效果不理想。根据SCR系统的特点,提出利用RBF神经网络的非线性拟合能力,对系统建立预测模型,再运用预测控制原理建立控制的方法。经仿真验证,该方法控制效果良好。 相似文献
6.
基于RBF神经网络的砂土液化预测 总被引:6,自引:0,他引:6
通过分析砂土液化成因及其影响因素,建立了砂土液化预测RBF网络模型,并与BP网络预测模型进行比较。测试结果表明,应用RBF网络模型对砂土液化进行预测,预测效果好,识别精度高. 相似文献
7.
利用菌群算法提出了一种新的菌群RBF神经网络算法,并将其应用到股票价格预测,同时在预测中引入了技术指标模型。仿真试验表明,相比于传统的RBF神经网络算法,菌群RBF神经网络算法可以得到更好的训练效率和预测结果。 相似文献
8.
9.
在分析影响地下水位动态的诸多因素的基础上,在RBF网络的基础上建立地下水的水位动态预测模型.通过Matlab语言用计算机预测了地下水位动态,计算结果表明:与模糊识别法相比,RBF神经网络模型不仅计算精度很高,同时泛化能力也很强强等特点,能够正确反映地下水位动态变化,是一种值得推广的地下水位动态预测神经网络模型. 相似文献
10.
基于RBF神经网络的时间序列预测 总被引:3,自引:0,他引:3
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测. 相似文献
11.
船舶自动舵性能的优劣直接关系到船舶的航行安全和经济效益,针对船舶运动具有非线性、大滞后等复杂性的特点,将神经网络和模糊控制应用于船舶运动控制中。仿真结果显示它不仅具有常规控制的性能,而且具有更强的鲁棒性和适应非线性对象的能力。 相似文献
12.
刘悦婷 《宝鸡文理学院学报(自然科学版)》2011,31(2):61-63,68
目的提高电厂锅炉温度系统控制的可靠性和安全性,达到精确控制。方法提出一种基于RBF(Radial Basis Function)神经网络的PID控制器,建立3层神经网络模型。结果在RBF-PID控制过程中,由神经网络RBF在线辨识得到梯度信息,然后根据梯度信息对PID的3个参数进行在线调整,从而改善系统的控制品质。结论仿真结果表明,基于RBF神经网络的PID控制较传统PID控制有较强的鲁棒性,提高了实时性能,获得了更好的控制效果。 相似文献
13.
研究模型未知、不稳定的不动点位置及其局部性态未知情形下的时滞混沌系统的控制问题。提出了一种神经网络预测控制方法,将模型未知时的时滞混沌运动控制到不稳定的不动点处。分析了控制系统(包括观测器、正则神经网络预测器和在线训练的线性神经网络预测控制器)的稳定性,与现有同类方法比较,本方法收敛速度快,算法简便。仿真实验表明了本方法的有效性。 相似文献
14.
文章针对网络化控制系统普遍存在的时延问题,介绍了一种基于径向基函数神经网络自整定PID的控制策略.在Matlab/Simulink环境下搭建了基于TrueTime工具箱的网络控制系统的仿真平台.仿真结果表明:与常规PID控制相比,神经网络自整定PID控制算法可有效地提高系统的鲁棒性和自适应性,且此方法易于实现,便于工程... 相似文献
15.
为了提高热风炉的燃烧效率,改善热风炉温控系统的自动化程度,提出了一种基于RBF神经网络整定的PID控制策略。首先,通过RBF神经网络算法和增量式PID控制器的结合,将神经网络强大的自学习能力应用于对增量式PID参数的调整。然后,在常规热风炉温控系统的基础上,将其外环改为采用RBF神经网络整定的PID控制。热风炉温控系统中内环以煤气阀门开度为变量,外环以拱顶温度为控制变量,通过改进的串级控制来实现热风炉的燃烧优化调整。Matlab仿真分析和实际应用效果表明,RBF神经网络整定的PID控制曲线几乎无超调量,系统抗干扰能力相对传统的PID控制提高了50%。与传统的手动控制相比,所提出的控制策略使得原系统的抑制干扰能力明显增强、鲁棒性更好,在热风炉温控方面具有良好的研究和应用价值。 相似文献
17.
将RBF神经网络和模糊理论结合起来,提出了一种基于RBF神经网络和模糊理论实现智能控制的方法。该方法能够有效克服磨矿效率和旋流器入口压力等波动引起的扰动,使磨矿浓度和溢流粒度的波动减小,为浮选过程产品品位改善及产量提高创造了有利条件,在技术上实现了优化磨矿分级过程。该分析过程相对简单,网络学习训练时间少,学习精度高,估计值与分析值拟合非常好。仿真表明这类智能控制器可用于难以建立数学模型的控制系统。 相似文献
18.
提高中国粮食生产量的预测精度与效率是人们关注的一个重要问题.对RBF神经网络的结构、特性和训练算法作了简要的概述.根据粮食产量与其影响因素之间存在的映射关系,应用RBF神经网络建立了多因素非线性时间序列预测模型,并进行了仿真试验.结果表明,用RBF神经网络进行粮食生产预测得到了十分满意的结果. 相似文献