首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
<正>什么是石墨烯呢?很简单,石墨烯就是单层的石墨,如果将石墨的一层结构单独拿出来,那就是石墨烯。石墨烯就是单层的石墨 在整个宇宙之中,所有的物质都是由不同的元素所构成的,但同一种元素却并非只能构成同一种物质,元素通过不同的结构进行组合就能够形成不同的物质。以碳元素为例,当一个碳原子周围有四个碳原子,它们以共价键的方式相结合,且周围的四个碳原子与中心的碳原子形成一个正四面体结构的时候,就组成了一种物质,我们叫它钻石。因为碳原子之间是以很强的共价键结合的,所以钻石的硬度很高,又被称为金刚石。钻石的硬度很高,  相似文献   

2.
正石墨烯(graphene)是碳单质的一种同素异形体,由碳原子以sp2杂化方式形成的六角环状二维原子晶体材料,也是以sp2杂化为主的碳质材料的基本结构单元。理论上,石墨烯只有单个碳原子层的厚度,约0.35纳米。实际上,人们常把10层以内的薄层石墨统称为石墨烯材料。石墨烯译自英文"graphene",是由graphite(石墨)和ene(烯类词尾)组合而成的名词。2010年10月,瑞典皇家科学院宣布将2010年度诺贝尔物理学奖授予英  相似文献   

3.
<正>石墨烯原本就存在于自然界,只是难以剥离出单层结构。1毫米厚的石墨大约包含300万层石墨烯。人们很早就发现了石墨,但直到2004年才发现石墨烯。有没有这样一款坚韧的薄膜,它能以一支铅笔尖的承受面,撑住一头大象的重量,而不会被戳破?石墨烯可以做到。这种神奇的材料究竟是如何“炼成”的?中国科学院院士、北京石墨烯研究院院长刘忠范与北京石墨烯研究院副院长、石墨烯器件技术研究部部长魏迪,向公众介绍了石墨烯——这款曾获得2010年诺贝尔奖的明星材料。  相似文献   

4.
石墨烯作为一种独特的由碳原子组成的单原子层二维材料,自2004年首次在实验中被制备以来,受到了广泛的关注和研究。石墨烯独特的电学、热学和光学等特性,使其在微电子、储能、透明导电电极以及复合材料等领域有着广阔的应用前景。石墨烯在许多领域的应用对其电子结构、电导率以及透光率等性能有着严格的要求,而这些性能与石墨烯的层数紧密相关。因此,精确的控制石墨烯的层数成为十分重要的研究内容。虽然现有报道提出了一些得到确定层数石墨烯的方法,快速可控得到精确层数石墨烯仍然是现阶段石墨烯应用的一大瓶颈。同时,制备图案化石墨烯也是石墨烯应用中亟需解决的问题。激光是目前最前沿的材料加工和制造手段之一,在现代制造业中扮演了重要角色,已成为国际先进制造技术研究的焦点之一。激光的高亮度、高方向性、高单色性以及典型多维性特征和极端工艺参数使其在加工处理石墨烯方面具备独特优势。结合以上研究热点,本论文提出了一种通过激光辐照的方式对石墨烯进行精确的层数控制、图案化和性能调控的新方法。采用连续CO2激光在真空环境下对石墨烯进行辐照,可将原始多层的石墨烯均匀减薄至2层。采用皮秒激光在大气环境下对石墨烯进行扫描处理,实现多层石墨烯的精确减薄,单次加工即可得到所需层数(1层,2层,3层等)的石墨烯而无需重复加工,并通过图案化的减薄处理,可使不同空间区域具备不同的石墨烯层数。采用飞秒激光切割单层以及多层石墨烯,可简单快捷精确地制备出各种形状和尺寸的石墨烯电子元器件结构。与现有的石墨烯减薄和图案化方法相比,本论文所用方法具有加工过程简单、非接触式加工、环境友好、加工效率高以及加工过程柔性等优势,在石墨烯光电子功能器件领域有着广阔的应用前景。  相似文献   

5.
《科学大观园》2022,(15):24-25
<正>由于石墨烯的超强传输性能和非常好的导热性,石墨烯也被认为是取代硅原料的材料,石墨烯不出意外应该能成为下一代的电路板材料。石墨烯因其高导电性、高导热性和高强度等优异性能而被称为“神奇材料”,它可能会彻底改变大量应用,灯泡、芯片、电池、触摸屏,还有智能手机和新能源的汽车,石墨烯可以胜任的领域数不胜数,下面就来盘点一下石墨烯的各种用途!  相似文献   

6.
《科学大观园》2022,(15):12-13
<正>用铅笔在纸上轻轻划过,你就有机会获得一种长得和蜂巢一样的新材料。这种新材料被称为石墨烯,也被誉为“黑金”。这是一种非常神奇的材料,它非常薄,20万片石墨烯堆起来的厚度只有人类1根头发粗细,又非常坚硬,用石墨烯制成1毫米厚的薄膜可以让2吨重的大象在上面跳舞。如今石墨烯被用在各个领域,军事武器、智能眼镜、显示屏、电池等产品中都有石墨烯技术的运用。关于石墨烯的各种讨论也变得越来越神秘。  相似文献   

7.
随着便携式电子设备的快速发展,对于器件小型化和灵活性的需求正在成为一个重要的趋势。石墨烯是sp2杂化单原子层的二维晶体,具有独特的电学、机械、热学性质,较大的比表面积、较低的制造成本等,广泛的应用在可穿戴、智能电子器件等领域。尽管目前已有一些报道提出了很多关于石墨烯基可穿戴柔性电池、电容器以及集成电路、驱动器件的研究,但是大多数制备方法存在制备过程烦琐、操作复杂、制备和加工样品时间较长、样品容易遭到污染等问题,限制了其商业化的应用。此外,有效实现石墨烯功能复合材料的规模化制备仍然具有很大的挑战性。激光加工为非接触式加工技术,其较快的材料加工速度、较大的扫描面积、优越的纳米空间分辨率和逐步处理为高效、快速制备和加工石墨烯提供了新的思路。本文提出了一种激光区域选择性微加工氧化石墨烯纤维以及快速、大体积制备石墨烯功能复合材料的新方法;构建了不同结构的石墨烯/氧化石墨烯一体化纤维电容器,并获得了湿气响应刺激的可编织石墨烯基纤维驱动器,通过调节不同的激光参数,纤维在湿气下发生弯曲、弯折及螺旋扭转等复杂的响应形变;采用激光照射氧化石墨烯凝胶,引发凝胶迅速自发的还原反应,极短时间内将整个氧化石墨烯凝胶还原成石墨烯块。基于此成功制备了大块的三维结构石墨烯、化学掺杂的石墨烯、金属以及金属氧化物掺杂的石墨烯等。  相似文献   

8.
正近日,山东理工大学低维光电材料与器件团队在光学非线性领域研究中取得突破,他们发现石墨炔具有优异的紫外非线性特性,可"恰到好处"地吸收紫外线。相关成果已发表在国际知名期刊《纳米尺度》上。以石墨烯为代表的二维材料因为突出的物理、化学、生物特性,迎来了前所未有的研究热潮和广泛应用。作为石墨烯的同胞兄弟——石墨炔可能具有优于石墨烯的超快光电特性。  相似文献   

9.
《中国科技成果》1999,(10):37-38
一、主要技术内容 汽车热交换器用三层复合铝合金带材,是在以Al-Mn-X系合金为基体的芯材上,双面包覆10%左右的Al-Si-X系钎料合金层,将三层不同的铝合金通过轧制复合而成,最终产品规格为0.10~0.16mm厚度的复合卷带材.该材料可满足减重、耐腐蚀、热传导性好、强度高、加工成型性好、可钎焊、节约贵金属等机械、力学、物理综合性能的要求,是替代进口、应用于我国引进的轿车生产线以及轻型车和微型车制造汽车热交换器必不可少的关键材料.目前已完成所需的8种合金、12种牌号三层复合带.  相似文献   

10.
多晶材料的强度随晶粒尺寸减小而提高。但理论分析及分子动力学模拟结果显示,当材料晶粒尺寸小于某个临界值后,进一步减小晶粒尺寸可能导致材料软化。多晶体材料极值强度的出现是由于塑性变形的控制机制由晶格位错运动逐步转化为晶界行为。本研究组研究了具有不同孪晶片层厚度的纳米孪晶纯铜的极值强度,结果发现强度随孪晶片层厚度下降而提高。当孪晶片层厚度为15nm时,材料强度达到最大值。进一步减小孪晶片层,强度反而减小、出现软化现象。随孪晶片层减小,样品的塑性和加工硬化能力单调增加。分析表明纳米孪晶铜中极值强度的出现是由于随孪晶片层尺寸减小塑性变形机制从位错孪晶界相互作用主导转变为由孪晶片层结构中预存位错运动主导所致。  相似文献   

11.
一、桥环烃的命名共用两个或两个以上碳原子的多环脂环烃,称为“桥环烃”或“桥烃”。命名方法:根据组成桥环烃的环数用二环、三环……作为词头,词头后在方括号中按由多到少的次序用阿拉伯数字注明各桥所含碳原子数,各数之间用下角圆点分开,以区别于标注位次时用的逗号。计算桥上的碳原子时,要把共用的碳原子除外,若桥中间无碳原子时则称为“键桥”以区别原子桥。键桥的原子数用阿拉伯数字零(0)表示,并在数字右上角加指数标出其桥接位次。最后用相当于环上全部碳原子数的链烃名称作为词尾。位次编号:自桥头的一端开始循最长的环节编到桥头的另一端。然后再循余下的最长的环节编回到起始桥头,最短的环节最后编号。例如:命名为:三环[3.2.1.02,4]辛烷。C1和C5为共用的叔碳原子,称“桥头(碳原子)”。最长的桥 1,2,3,4,5含碳原子三个次长的桥 5,6,7,1含碳原子二个较短的桥 1,8,5含碳原子一个短桥(键桥) 2,4含碳原子零个二、螺环烃的命名仅共用一个碳原子的多环脂环烃称为螺环烃。共用的碳原子称“螺碳原子”。简单螺环烃的命名:(1)根据整个环中所含的螺原子数目,而用螺、二螺、三螺等作词头,然后按整个环编号,并用阿拉伯数字注出各螺原子间所夹的碳原子数目,数目间用下角圆点分开以区别于用逗号标注位次的方法,并用方括号括起,最后用整个环的全部碳原子数的链烃名称作为词尾。(2)用组成螺环烃的单环脂环烃的名称中间加“螺”字命名,其中较大环的名称放在前面,但编号则按各环的固有编号。位次编号:单螺环烃整环编号是由邻接于螺原子的一个碳原子开始,由小环编到大环。例如:整个环的全部碳原子为8个,C4为螺原子,C1、C2、C3为小环所夹碳原子,C5、C6、C7、C8为大环所夹碳原子。命名为:(1)螺[3.4]辛烷;(2)环戊烷螺环丁烷。多螺环整环编号是由邻接于末端螺原子开始,由较小的端环顺次编完,并尽可能给螺原子以较小的编号。例如:整个环的全部碳原子为10个,C4及C5为螺原子。命名为:二螺[3.0.3.2]癸烷。当螺环上含有不饱和键或取代基时,应尽可能给予不饱和键和取代基较小的编号,此时编号顺序可不考虑顺反方向。例如:命名为:3-甲基螺[3.5]壬-5-烯。  相似文献   

12.
一、主要技术内容 该管材、管件是由两种不同材质,经过科学合理的配方后经三层共挤而成,其内外层由PVC树脂、添加剂、助剂和改性剂等制成,芯层由比重为0.7~0.8g/cm3的极细小密闭泡孔结构PVC材料组成,正是通过这种改性使PVC内外层和蜂巢状的芯层发泡,不仅具有传统PVC实壁管优于铸铁管、钢管的全部优点,而且还具有实壁PVC管不可比拟的特性.由于其特殊的复合三层结构,因此它不仅在性能方面比普通PVC实壁硬管更优越,而且还具有实壁管所没有的优越性.  相似文献   

13.
本文通过科学计量学的方法,考察了石墨烯发现前后文献链条上的关键节点文献,对有关2010年诺贝尔物理学奖的争议进行了回答。研究结果表明,海姆、诺沃肖洛夫2004年发现石墨烯的文献以及发现石墨烯中的电子是具有无质量的狄拉克费米子两个成果具有很高的被引频次,也有很高的网络中介中心度值。他们获得诺贝尔奖是理所应当。另一方面,赫尔只有一篇2006年发表的文献处于链条之上,表明他在石墨烯发现之后对其性质的研究做出了实质性的贡献。凯姆则有两篇文献位于石墨烯发现前后的链条上,尤其是对石墨烯中存在肉眼可见的量子霍尔效应这一独特性质的发现,引发了大量相关研究。因此,海姆认为他也应当共同获奖是有相当理由的。  相似文献   

14.
高温超导体     
正2018年3月5日,《自然》(Nature)期刊连发两篇文章:将两层只有原子厚的石墨烯以特别的角度(1.1度,被称为"魔角")偏移时,材料就能在零电阻下导电。尽管该系统仍然需要被冷却至1.7K(1.7开尔文,约零下271摄氏度),但结果表明了它或许可以像已知的高温超导体那样导电。一旦该结果被确认,此次的发现对于理解高温超导电性至关重要。这一发现引起物理学界的热烈反响,而文章的第一作者为年仅  相似文献   

15.
2010年诺贝尔物理奖授予将石墨分离成构成它的单片碳分子的两位科学家。在有关报道中,将从石墨中分离出来的单片碳分子的英文词graphene翻译为石墨烯。但笔者认为,石墨烯这个术语是不合逻辑的。什么是烯?烯是一类碳氢化合物。例如,乙烯、丙烯、异戊二烯……都属于烯。它们被称为  相似文献   

16.
一、主要技术内容 PVC-U芯层发泡复合管材由芯层和表层两种配方三层共挤而成.其内外表层由PVC树脂添加剂和改性剂加工而成,芯层为0.79~0.9g/cm3比重的极细小的闭孔组成的PVC发泡层,通过PVC内外皮层和发泡层各自特性的有机结合改变了管材的力学结构,使其产品具有如下特性:  相似文献   

17.
1985年发现了碳的新一种同素异型体C60及其家族——富勒烯C60,发明人因此而获诺贝尔奖。C60由60个碳原子组成,分子量为720,共有12个五元环和20个六元环组成相连的共轭体系,其分子结构类似足球的球状分子,直径为0.71nm。C60的奇异物理化学性质引起广泛关注,并且在材料科学、光学、微电子和信息科学等领域有潜在的应用价值。  相似文献   

18.
由美国哥伦比亚大学、韩国首尔国立大学以及韩国标准与科学研究院的组成的联合小组称,他们首次实现了石墨烯发光.石墨烯仅有一个原子厚度,是碳的理想晶体形式.研究组将石墨烯连接到金属电极上,使其悬空于基底材料上方并加载一定的电流使其加热.这一研究组的主要负责人之一,美国哥伦比亚大学机械工程系教授詹姆斯·霍恩表示:“可以说我们制造出了世界上最薄的灯泡.这种新型‘宽带’光源可以被集成到硅芯片上,从而为实现原子厚度,可折叠且透明背景显示技术以及基于石墨烯的硅芯片光通讯技术铺平了道路.”  相似文献   

19.
本研究采用三点弯曲实验方法系统地研究了具有不同尺度组元层和界面结构搭配的Cu/Au和Cu/Cr层状材料的断裂行为及其尺度与界面/晶界效应。研究发现,组元性质、尺度和界面/晶界结构是影响金属多层材料变形和断裂行为的主要因素。对于具有"透明"界面的Cu/Au多层材料,其变形和断裂行为表现出显著的尺度效应,而具有"模糊"界面的Cu/Cr多层材料的塑性相对较差,其变形和断裂行为没有明显的尺度效应。基于理论分析,提出了高强高韧层状金属材料的多尺度层状结构设计思路。  相似文献   

20.
作为一种典型的受限小量子体系,二维量子体系具有丰富的物理规律和新奇的物理效应,是探索低维物理和开展量子调控的理想材料体系。本文重点介绍新型小量子体系的理论研究和计算模拟,二维新型材料体系的构筑、物性探测与调控,新型理论计算方法和前沿实验技术的开发等方面的研究进展。在理论方面,发现二维材料激发态的普适性规律,揭示拓扑/超导体系中的演生超对称,发展第一性原理非线性光学计算方法;在实验方面,在铁基超导薄膜的制备和量子序的研究、准晶石墨烯的电子结构和石墨烯的手征对称性破缺的实现、氧化物薄膜及二维材料的离子调控等方面取得重要进展,并发展高分辨扫描超导量子干涉器等。这些原创性科学研究加深了人们对复合二维量子体系丰富量子态和新奇物理现象的理解,增强了我国在小量子体系制备、物性探测与调控方面的国际影响力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号