首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
现有的不可微规划算法,一般地都需要计算广义梯度元,并且在确定搜索方向时的二次规划问题也比较复杂.作者通过引进次微分集的外接长方体的概念,建立了一种可实现的算法.该算法避免了计算广义梯度元的麻烦,搜索方向的确定也非常简单,并且证明了算法的收敛性.  相似文献   

2.
就一类在凸集C上目标函数为黎普希兹连续的带有可微不等式约束的非线性规划问题(P),在广义Kuhn-Tucker约束品性或广义Arrow-Hurwicz-Uzawa约束品性的条件下,研究了问题(P)的Kuhn-Tucker型必要条件.并且说明了当C为开集时相应的规划问题是问题(P)的特殊情况;目标函数为可微函数与凸函数的和时的相应的不可微非线性规划问题也是问题(P)的特殊情况;以及目标函数由黎普希兹连续的函数的商式构成的相应的分式规划问题也是问题(P)的特殊情况.  相似文献   

3.
提出了解决线性约束不可微凸规划的一个新算法-既约次梯度有效集算法。该算法充分利用了目标函数的次梯度和有效集策略,发地选择规划,克服了由目标函数是否光滑所造成的困难,并保证了算法的总体收敛性。  相似文献   

4.
不可微规划的算法及其进展   总被引:3,自引:0,他引:3  
综述了一门新兴发展的数学学科──不可微规划的算法及最新进展。  相似文献   

5.
针对在线性约束条件下,目标函数形如有限个可微函数之极大值函数与可微函数 之和的不可微约束规划,提出一个能采用任何一种目标函数近似二阶模式构造,以及 任何一种期望得到Newton类步设想的算法,由算法中的保护措施,使在有效的情 况下发挥二阶近似的作用,而在不利的情况下仍能保证全局收敛性.同时,利用ε-广 义方向导数和光滑极小化中的变尺度思想提出两种期望得到Newton类步的模式。  相似文献   

6.
提出了求解一类不可微凸规划的信赖域算法,该算法不满足有关文献中的假定,证明了算法的全局收敛性。  相似文献   

7.
8.
本文对约束不可微规划问题min{f(x)|Ax=b,x≥0}给出了一种既约次梯度算法,在f(x)是凸函数和约束集有界且极点非退化的假设下证明了此算法在有限步内得到问题的最优解,或由此产生一个序列{x~k},使得{x~k}的每个聚点都是问题的最优解,同时对另一类约束不可微规划问题min{f(x)|Ax<0}也给出类似的算法,并证明了相应的收敛性。  相似文献   

9.
作者构造了一类不可微规划问题的一阶和二阶对偶模型,其目标函数含有紧凸集的支撑函数项.利用Fritz John最优性必要条件,在适当条件下建立了这两类一阶和二阶对偶模型的弱和逆对偶性定理.  相似文献   

10.
在区间分析基础上,本文对分段光滑函数定义一种特殊导数概念,利用导函数的区间扩展,推出一种求解此类不可微总体极值的区间算法  相似文献   

11.
本文研究极小化局部Lipschitz连续函数的下降算法。文中给出了一个模型算法,它使用目标函数的近似广义梯度确定下降方向,这使得有可能构造仅使用函数值的不可微极小化下降算法。在适当的条件下,我们证明了算法的收敛性,并给出了有关此算法的若干数值计算结果。  相似文献   

12.
本文针对Rubin P A所述的一类不可微规划(附加考虑了非负约束):minF(x)= f(x)+g(x),λ:{x|Ax=b,x≥0},其中g(x)=max              且为严格凸函数, 提出了一个不用精确线搜索的、易于执行的、降维的可行方向法,并在非退化的假设下, 证明了算法的收敛性。  相似文献   

13.
解约束不可微规划问题的极大熵方法一般是不收敛的,本文在较弱的条件下给出了该方法的收敛性定理,并且给出了解约束不可微规划问题的一个改进的极大熵方法。  相似文献   

14.
本文探讨了求解线性约束不可微凸规划极小问题,给出了一类高阶算法,该算法模仿了变尺度思想,应用了Kiwiel[1]聚合次梯度思想,试图改善逼近程度,提高收敛速度,并证明了算法有较好的收敛性。  相似文献   

15.
综述了一门新兴发展的数学学科———不可微规划的理论及最新进展.  相似文献   

16.
本文利用Bazarra提出的伪方向导数,以Clarke的广义梯度为工具,通过解二次规划得可行下降方向,用Armijo搜索作一维搜索,我们给出了一类一般线性约束下不可微规划的可行方向法——易实现的Clarke广义梯度投影法。在不要求约束非退化的条件下,我们证明了算法的收敛性。  相似文献   

17.
对局部Lipschitz函数引进了广义凸性的概念,并在广义凸性下讨论了一类不可微规划的Kuhn-Tucker充分条件及其Mond-weir型对偶的各种对偶定理。  相似文献   

18.
对局部Lipschitz函数引进了广义凸性的概念,并在广义凸性下讨论了一类不可微规划的Kuhn- Tucker充分条件及其Mond- weir型对偶的各种对偶定理.  相似文献   

19.
目的 研究求解不可微优化问题的算法及收敛性.方法 引进次微分集的外接长方体的概念,确定目标函数的下降方向.结果 给出了一般的无约束不可微优化的一类可实现算法,并且证明了算法的收敛性,在一定的条件下算法还具有线性收敛性.结论 初步的数值例子表明算法是有效的,且具有简单实用的特点.  相似文献   

20.
G-不变凸函数是一类新的广义凸函数,是G-凸函数的推广。本文主要研究了一类带等式和不等式约束的目标函数带支撑函数的不可微多目标规划问题。首先,构造了该问题的Wolfe型对偶模型。其次,利用G-Karush-Kuhn-Tucker最优性必要条件,分别在G-不变凸和G-拉格朗日函数不变凸假设下证明了该问题及其对偶问题的弱对偶定理。最后,在适当条件下给出该问题及其对偶问题的强对偶和逆对偶定理及其证明。本文的结论更具一般性,将前人的相关结论推广到了非可微的情形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号