首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary In the isolated urinary bladder of the toad, 10–5–10–4M orthovanadate produces inhibition of the active transport of Na+ and H+ ions as well as of antidiuretic hormone-mediated osmotic flow of water. Since transport of H+ ions and osmotic water flow are not inhibited when (Na++K+)-ATPase is inhibited by ouabain, biological actions of vanadate are not necessarily related to inhibition of (Na++K+)-ATPase.This research was supported by grant AM-14915 from the National Institutes of Helath.  相似文献   

2.
The Na+,K+-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na+ ions out of the cell and of K+ ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na+,K+-ATPase, recent work has suggested additional roles for Na+,K+-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na+,K+-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na+,K+-ATPase as a signal transducer, but also briefly discuss other Na+,K+-ATPase protein–protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.  相似文献   

3.
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor of this transport system. Our results indicate the the Na+/K+, pump and Na+/K+ ATPase activity are significantly lower in CH than in PH, although basal ouabain-sensitive (OS) QO2 was negligible in both of these cell preparations. However, OSQO2 was significantly lower in CH than in PH when the Na+/K+ pump was activated using the ionophore nystatin in a Na+-containing medium. These results indicate that the differences in membrane ion transport exist between hepatocytes from different locations of the liver lobule.  相似文献   

4.
Summary The time-course of the cardiac action potential can be accounted for in terms of ionic currents crossing the cell membranes. Depolarizing current is carried by Na+ or Ca2+ entering the cells, repolarizing current by K+ leaving the cells. Membrane permeability for the passive movement of these ions is thought to be voltage-dependent as well as time-dependent. Net transfer of charge may also result from active transport, 2 Na+ out against 1 K+ in; or coupled exchange, 3 or 4 Na+ in against 1 Ca2+ out. This review follows the path by which present-day knowledge has been reached. It also gives a few examples to illustrate that electrophysiology has provided concepts useful to clinical cardiology.  相似文献   

5.
In the present study, we have examined the intestinal Na+ transport, through the Na+-H+ exchanger, in ileal brush-border membrane vesicles (BBMV) isolated from spontaneously hypertensive rats (SHR), and normotensive Wistar Kyoto (WKY) rats as a control group. Na+ uptake into ileal BBMV was stimulated in the presence of a proton gradient (pH 5.5 inside/pH 7.5 outside) in SHR and WKY rats, resulting in a transient accumulation (overshoot) in both groups of rats. No overshoot was observed in the absence of a pH gradient. The magnitude of the accumulation was significantly higher in SHR than in WKY rats. Uptake of Na+ at equilibrium was identical in the presence and the absence of a proton gradient and was not changed in SHR. The use of amiloride inhibited pH gradient-driven Na+ uptake in a dose-dependent manner with a Ki of 90 μM and 100 μM for SHR and WKY rats, respectively. The relationship between proton gradient-driven Na+ uptake and external Na+ concentration was saturable and conformed to Michaelis-Menten kinetics in both SHR and WKY rats. Lineweaver-Burk analysis of the pH gradient-driven Na+ uptake indicated values of Vmax that were significantly increased in SHR compared to WKY rats (11.4±0.55 nmol/mg/8 s vs. 4.96±0.78 nmol/mg/8 s for SHR and WKY rats, respectively). In contrast, similar Km values for Na+ were found between SHR and WKY rats (4.0±0.2 mM vs. 4.9±0.6 mM for SHR and WKY rats, respectively). These studies show derangement in ileal BBMV Na+ transport of SHR, which is characterized by increased Na+-H+ exchanger activity. Received 18 December 1996; received after revision 3 February 1997; accepted 7 February 1997  相似文献   

6.
Sodium and calcium action potentials in human anterior pituitary cells   总被引:1,自引:0,他引:1  
Summary Human anterior pituitary cells derived from a somatotropin-secreting adenoma were capable of generating action potentials with Ca2+ and tetrodotoxin-sensitive Na+ components. A major fraction of the action current was carried by Na ions.We wish to thank Dr O. Sand for correcting the English and Miss Michiko Takano for technical assistance. We also acknowledge the collaboration of Dr S. Miyazaki in the electron microscope.  相似文献   

7.
Selective pharmacological Na+/H+ exchange (NHE) inhibitors were used to identify functional NHE isoforms in human small intestinal enterocytes (Caco-2) and to distinguish between direct and indirect effects on transport via the intestinal di/tripeptide transporter hPepT1. The relative potencies of these inhibitors to inhibit 22Na+ influx identifies NHE3 and NHE1 as the apical and basolateral NHE isoforms. The Na+-dependent (NHE3-sensitive) component of apical dipeptide ([14C] Gly-Sar) uptake was inhibited by the selective NHE inhibitors with the same order of potency observed for inhibition of apical 22Na+ uptake. However, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) also reduced [14C]Gly-Sar uptake in the absence of Na+ and this inhibition was concentration and pH (maximal at pH 5.5) dependent. NHE3 inhibition by S1611 and S3226 modulates dipeptide uptake indirectly by reducing the transapical driving force (H+ electrochemical gradient). EIPA (at 100 μM) has similar effects, but at higher concentrations (>200 μM) also has direct inhibitory effects on hPepT1.Received 28 February 2005; received after revision 20 April 2005; accepted 20 May 2005  相似文献   

8.
Summary Stimulation of active Na+ transport in the toad skin by antidiuretic hormone (ADH) and p-chloromecuribenzoate (P-CMB) was blunted by the presence of silver (Ag+). Amiloride inhibited active Na+ transport, equivalently, whether Ag+ was present or not.This work was supported by the Nephrology Training grant from the National Institute of Arthritis and Metabolic Diseases (1-TO1-AM-05697-02 and –03) and by Whitehall Foundation grant No. 78-156 ck-1 DSR.  相似文献   

9.
Summary It has been shown experimentally that two different potentials appear across an intra-nonpermutating membrane3 when two different solutions (e.g., solution I: 0.1n NaCl+0.0001n KCl; and, solution II: 0.1n KCl + 0.0001n NaCl) are separated by such a membrane, and when the pores of the intra-nonpermutating membrane are supplied with ions from either solution I or solution II (in this case: essentially with Na+ ions from solution I, or essentially with K+ ions from solution II). The theoretical background, and other considerations, for these experiments will be found in reference.  相似文献   

10.
An important trait associated with the salt tolerance of wheat is the exclusion of sodium ions (Na+) from the shoot. We have previously shown that the sodium transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na+-exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression, we show that the affinity (K m) for the Na+ transport of TmHKT1;5-A, at 2.66 mM, is higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling, we identify residues D471/a gap and D474/G473 that contribute to this property. We identify four additional mutations in amino acid residues that inhibit the transport activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the pore. We propose that the underlying transport properties of TmHKT1;5-A and TaHKT1;5-D contribute to their unique ability to improve Na+ exclusion in wheat that leads to an improved salinity tolerance in the field.  相似文献   

11.
Summary The effect of adrenaline on the Na+-pump in bullfrog (Rana catesbeiana) sympathetic ganglion cells was studied by use of electrophysiological methods. The rate of removal of excess Na+ injected into a ganglion cell was increased by adrenaline. The K+-activated hyperpolarization of cell membrane, which might be produced by an electrogenic Na+-pump, was also increased by adrenaline. These results suggested that adrenaline was able to accelerate the Na+-pump, possibly the electrogenic Na+-pump.  相似文献   

12.
Summary The forward motility of the rat caudal epididymal spermatozoa has been studied in different Na+ concentrations. When spermatozoa were suspended in a completely Na+-free solution, the forward motility suffered a progressive fall and after 3 h was completely suppressed. This effect was fully reversible on resuspending the spermatozoa in a solution containing Na+. Amiloride caused a fall in motility and the effect was similar to that of Na+ removal. The inhibition by amiloride of the motility was concentration dependent and the dose response curve showed an IC50-value of about 5×10–5 M. The role of Na+ influx in the maintenance of sperm motility was discussed.This work was supported by the World Health Organization.The technical assistance of Mr C.M. Li and the gift of amiloride from Merck, Sharp and Dohme are gratefully acknowledged.  相似文献   

13.
Summary At 20 mM of acetaldehyde, the activities of three transport systems of L-alanine distinguished by the difference in their cation dependence, namely 1) Na+-specific, 2) Li+-dependent, and 3) Na+-independent systems, were significantly reduced in a similar manner. Only the Li+-dependent system was selectively inhibited at toxic concentrations of acetaldehyde and ethanol.  相似文献   

14.
Hypoxic/ischemic disruption of ionic homeostasis is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiologic change to protect the brain from hypoxic/ischemic injury. Here, we present a novel finding that activation of δ-opioid receptors (DOR) reduced anoxic Na+ influx in the mouse cortex, which was completely blocked by DOR antagonism with naltrindole. Furthermore, we co-expressed DOR and Na+ channels in Xenopus oocytes and showed that DOR expression and activation indeed play an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. Our results suggest that DOR protects from anoxic disruption of Na+ homeostasis via Na+ channel regulation. These data may potentially have significant impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide clues for better solutions of hypoxic/ischemic encephalopathy, and for the exploration of acupuncture mechanism since acupuncture activates opioid system.  相似文献   

15.
The lack of Na+,K+-ATPase expression in intercalated cells (IC) is an intriguing condition due to its fundamental role in cellular homeostasis. In order to better understand this question we compared the activities of Na+,K+-ATPase and Na+-ATPase in two MDCK cell clones: the C11, with IC characteristics, and the C7, with principal cells (PC) characteristics. The Na+,K+-ATPase activity found in C11 cells is far lower than in C7 cells and the expression of its β-subunit is similar in both cells. On the other hand, a subset of C11 without α-subunit expression has been found. In C11 cells the Na+-ATPase activity is higher than that of the Na+,K+-ATPase, and it is increased by medium alkalinization, suggesting that it could account for the cellular Na+-homeostasis. Although further studies are necessary for a better understanding of these findings, the presence of Na+-ATPase may explain the adequate survival of cells that lack Na+,K+-ATPase. Received 09 July 2008; received after revision 03 August 2008; accepted 12 August 2008  相似文献   

16.
10 mM isatin (2,3-dioxoindole) inhibited glucose influx into human erythrocytes by over 30%. The inhibition is of the competitive type, where the affinity constant (Kt) was increased from 5.71 (control) to 11.11 mM in the presence of isatin with no change in Vmax (130 nmol/min/ml packed cells). The observed inhibition of sugar transport by isatin was not mediated through membrane–SH groups accessible to iodoacetate, iodoacetamide, DTNB, DNP or sodium arsenite. Isatin inhibited sugar transport in the presence of 2 mM harmaline, an alkaloid inhibitor of Na+, K+–ATPase activity. The inhibition was non additive which suggests that these two compounds interact with the same or a similar site on the erythrocyte membrane.  相似文献   

17.
Summary In isolated perfused posterior gills ofE. sinensis acclimated to fresh water, NH 4 + may be used as a counter-ion for Na+ active transport. This Na+/NH 4 + coupled transport can, however, only account for a small part of the Na+ total active influx.Chargé de Recherches du FNRS-Acknowledgments. This work has been aided by a grant crédit aux chercheurs from the FNRS and by a grant No. 2.4511.76 from the FRFC.  相似文献   

18.
Summary Nuclear magnetic relaxation measurements of the ions Na+, Rb+ and Cs+ in a Halobacterium sp. are described. The results support a theoretical model which involves the binding of intracellular alkali ions.We wish to thank the European Molecular Biology Organization (EMBO) and the Nederlandse Stichting voor Zuiver Wetenschappelijk Onderzoek (ZWO) for the financial support that made our stay in Groningen possible.  相似文献   

19.
Summary Classification of excitatory amino acids into different groups, of possible value for transmitter identification, can be made on the basis of the differential effects of altered external [Na+] and [K+] on motoneurone depolarization in frog and immature rat spinal cord.Acknowledgments. We thank Mr D. J. Oakes for skilled technical assistance. This work was supported from the Medical Research Council.  相似文献   

20.
Summary The biological effects of lithium ions have been studied, using plant cytokinesis in onion root meristems as the experimental model. Lithium induces binucleate cells by inhibiting cell plate formation. Moreover, lithium and caffeine have additive effects on the induction of binucleate cells. Na+, K+, Ca++ and Mg++ antagonize lithium-induced inhibition of cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号