首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the ionotropic glutamate receptor (iGluR) family have between 4 and 12 consensus asparagine (N)-linked glycosylation sites. They are localized on the extracellular N-termini, and the loop between the penultimate and last transmembrane domains. These regions also contain the essential elements for formation of the ligand binding site. N-linked glycosylation does not appear to be essential for formation of the ligand binding site per se, but there are demonstrated interactions between glycosylation state and ligand binding affinity, receptor physiology, susceptibility to allosteric modulation and, in some cases, trafficking. There is no indication of a general role for N-linked glycosylation in iGluRs; instead the effects of glycosylation vary among glutamate receptor subtypes and splice variants, with specific effects on structure or function with different subunits.  相似文献   

2.
Synapses are central stages for neurotransmission. Neurotransmitters are released from the presynaptic membrane of one neuron, and bind to the receptors accumulated at the postsynaptic membrane, followed by the activation of the other neuron. The strength of a synapse is modified depending on the history of the previous neurotransmissions. This property is called synaptic plasticity and is implicated in learning and memory. Synapses contain not only the components essential for neurotransmission but also the signalling molecules involved in synaptic plasticity. The elucidation of the molecular structures of synapses is one of the key steps to understand the mechanism of learning and memory. Recent studies have revealed postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 as a core component in the architecture of synapses. In this review, we summarize up-to-date information about PSD-95/SAP90 and its interacting proteins, and the organization of synapses orchestrated  相似文献   

3.
The active role of astrocytes in synaptic transmission   总被引:7,自引:0,他引:7  
In the central nervous system, astrocytes form an intimately connected network with neurons, and their processes closely enwrap synapses. The critical role of these cells in metabolic and trophic support to neurons, ion buffering and clearance of neurotransmitters is well established. However, recent accumulating evidence suggests that astrocytes are active partners of neurons in additional and more complex functions. In particular, astrocytes express a repertoire of neurotransmitter receptors mirroring that of neighbouring synapses. Such receptors are stimulated during synaptic activity and start calcium signalling into the astrocyte network. Intracellular oscillations and intercellular calcium waves represent the astrocyte's own form of excitability, as they trigger release of transmitter (i.e. glutamate) via a novel process sensitive to blockers of exocytosis and involving cyclooxygenase eicosanoids. Astrocyte-released glutamate activates receptors on the surrounding neurons and modifies their electrical and intracellular calcium ([Ca2+]i) state. These exciting new findings reveal an active participation of astrocytes in synaptic transmission and the involvement of neuronastrocyte circuits in the processing of information in the brain.  相似文献   

4.
Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate most fast excitatory synaptic transmission in the central nervous system. The content and composition of AMPARs in postsynaptic membranes (which determine synaptic strength) are dependent on the regulated trafficking of AMPAR subunits in and out of the membranes. AMPAR trafficking is a key mechanism that drives nascent synapse development, and is the main determinant of both Hebbian and homeostatic plasticity in mature synapses. Hebbian plasticity seems to be the biological substrate of at least some forms of learning and memory; while homeostatic plasticity (also known as synaptic scaling) keeps neuronal circuits stable by maintaining changes within a physiological range. In this review, we examine recent findings that provide further understanding of the role of AMPAR trafficking in synapse maturation, Hebbian plasticity, and homeostatic plasticity.  相似文献   

5.
The scientific interest in the family of the so-called nervous vascular parallels has been growing steadily for the past 15 years, either by addition of new members to the group or, lately, by deepening the analysis of established concepts and mediators. Proteins governing both neurons and vascular cells are known to be involved in events such as cell fate determination and migration/guidance but not in the last and apparently most complex step of nervous system development, the formation and maturation of synapses. Hence, the recent addition to this family of the specific synaptic proteins, Neurexin and Neuroligin, is a double innovation. The two proteins, which were thought to be “simple” adhesive links between the pre- and post-synaptic sides of chemical synapses, are in fact extremely complex and modulate the most subtle synaptic activities. We will discuss the relevant data and the intriguing challenge of transferring synaptic activities to vascular functions.  相似文献   

6.
目的 探讨慢性酒精中毒导致神经系统损伤的机制.方法 建立小鼠慢性酒精中毒动物模型,观察动物行为学的改变,测量血浆酒精浓度,通过透射电镜了解小脑的超微结构变化.结果 酒精处理组的血浆酒精浓度为101.4±20.5 mg/dL,与对照组和配对对照组比较,酒精处理组小鼠行动欠灵活,小脑线粒体形状多样、大小多变、数量增加和平均横断面面积显著减小;突触的数量减少、突触后膜致密物质厚度变薄、突触活性区长度变短及突触间隙宽度变宽,突触前结构内附着于突触的囊泡较多.结论 酒精对线粒体和突触结构、功能的损害可能是慢性酒精中毒的神经系统损伤机制之一.  相似文献   

7.
Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain.  相似文献   

8.
The C1q family is characterized by a C-terminal conserved global C1q domain, which is structurally very similar to the tumor necrosis factor homology domain. Although some C1q family members are expressed in the central nervous system, their functions have not been well characterized. Cbln1, a member of the Cbln subfamily of the C1q family, is predominantly expressed in cerebellar granule cells. Interestingly, Cbln1 was recently shown to play two unique roles at excitatory synapses formed between cerebellar granule cells and Purkinje cells: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytosis pathway. Since other Cbln subfamily members, Cbln2-Cbln4, are expressed in various regions of developing and mature brains, Cbln subfamily proteins may generally serve as a new class of transneuronal regulators of synapse development and synaptic plasticity in various brain regions.  相似文献   

9.
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.  相似文献   

10.
Glutamate, by activation of metabotropic receptors (mGluRs), can lead to a reduction of synaptic efficacy at many synapses. These forms of synaptic plasticity are referred to as long-term depression (mGluR-LTD). We will distinguish between mGluR-LTD induced by pre- or postsynaptic receptors and mGluR-LTD induced by the locus of the expression mechanism of the synaptic depression. We will also review recent evidence that mGluR-mediated responses themselves are subject to depression, which may constitute a form of metaplasticity. Received 13 May 2008; received after revision 07 July 2008; accepted 11 July 2008  相似文献   

11.
Pyramidal neurons have a complex dendritic arbor containing tens of thousands of synapses. In order for the somatic/axonal membrane potential to reach action potential threshold, concurrent activation of multiple excitatory synapses is required. Frequently, instead of a simple algebraic summation of synaptic potentials in the soma, different dendritic compartments contribute to the integration of multiple inputs, thus endowing the neuron with a powerful computational ability. Most pyramidal neurons share common functional properties. However, different and sometimes contrasting dendritic integration rules are also observed. In this review, we focus on the dendritic integration of two neighboring pyramidal neurons in the hippocampus: the well-characterized CA1 and the much less understood CA2. The available data reveal that the dendritic integration of these neurons is markedly different even though they are targeted by common inputs at similar locations along their dendrites. This contrasting dendritic integration results in different routing of information flow and generates different corticohippocampal loops.  相似文献   

12.
E M Burns  J G Richards  H Kuhn 《Experientia》1975,31(12):1451-1453
The effect of protein-deficient diet on E-PTA stained synapses in rat cerebral cortex was studied by electron microscopy. No significant difference was observed in synaptic morphology between control and malnourished animals at 35 days postnatal.  相似文献   

13.
14.
Changes in the structure and number of synapses modulate learning, memory and cognitive disorders. Ubiquitin-mediated protein modification is a key mechanism for regulating synaptic activity, though the precise control of this process remains poorly understood. RING finger protein 13 (RNF13) is a recently identified E3 ubiquitin ligase, and its in vivo function remains completely unknown. We show here that genetic deletion of RNF13 in mice leads to a significant deficit in spatial learning as determined by the Morris water maze test and Y-maze learning test. At the ultrastructral level, the synaptic vesicle density was decreased and the area of the active zone was increased at hippocampal synapses of RNF13-null mice compared with those of wild-type littermates. We found no change in the levels of SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex proteins in the hippocampus of RNF13-null mice, but impaired SNARE complex assembly. RNF13 directly interacted with snapin, a SNAP-25-interacting protein. Interestingly, snapin was ubiquitinated by RNF13 via the lysine-29 conjugated polyubiquitin chain, which in turn promoted the association of snapin with SNAP-25. Consistently, we found an attenuated interaction between snapin and SNAP-25 in the RNF13-null mice. Therefore, these results suggest that RNF13 is involved in the regulation of the SNARE complex, which thereby controls synaptic function.  相似文献   

15.
Molecular analysis of axonal target specificity and synapse formation   总被引:1,自引:0,他引:1  
The development of neuronal connectivity requires the growth of axons to their target region and the formation of dendritic trees that extend into specific layers. Within the target region growth cones, the tips of extending axons are guided to finer target fields including specific subcellular compartments where they form synapses. In this article we highlight recent progress on molecular aspects of axonal subcellular target selection such as the axon initial segment or specific sublaminae of the vertebrate retina. We then discuss the very recent progress on the molecular analysis of synapse formation in the central nervous system, including the direction of differentiation into an inhibitory or excitatory synapse. Apparently, initial synaptic contacts are structurally and functionally modulated by neuronal activity, raising the question how neuronal activity can modify synaptic circuits. We therefore also focus on neural proteins that are up-regulated, secreted or converted by synaptic activity and, thus, might represent molecular candidates for experience-driven refinement or remodeling of synaptic connections. Received 5 July 2005; received after revision 19 August 2005; accepted 2 September 2005  相似文献   

16.
During development, axonal projections have a remarkable ability to innervate correct dendritic subcompartments of their target neurons and to form regular neuronal circuits. Altered axonal targeting with formation of synapses on inappropriate neurons may result in neurodevelopmental sequelae, leading to psychiatric disorders. Here we show that altering the expression level of the polysialic acid moiety, which is a developmentally regulated, posttranslational modification of the neural cell adhesion molecule NCAM, critically affects correct circuit formation. Using a chemically modified sialic acid precursor (N-propyl-D: -mannosamine), we inhibited the polysialyltransferase ST8SiaII, the principal enzyme involved in polysialylation during development, at selected developmental time-points. This treatment altered NCAM polysialylation while NCAM expression was not affected. Altered polysialylation resulted in an aberrant mossy fiber projection that formed glutamatergic terminals on pyramidal neurons of the CA1 region in organotypic slice cultures and in vivo. Electrophysiological recordings revealed that the ectopic terminals on CA1 pyramids were functional and displayed characteristics of mossy fiber synapses. Moreover, ultrastructural examination indicated a "mossy fiber synapse"-like morphology. We thus conclude that homeostatic regulation of the amount of synthesized polysialic acid at specific developmental stages is essential for correct synaptic targeting and circuit formation during hippocampal development.  相似文献   

17.
In the mammalian retina, light signals generated in photoreceptors are passed to bipolar and horizontal cells via synaptic contacts. In various pathological conditions, these second-order neurons extend neurites into the outer nuclear layer (ONL). However, the molecular events associated with this neurite outgrowth are not known. Here, we characterized the morphological synaptic changes in the CNGA3/CNGB1 double-knockout (A3B1) mouse, a model of retinitis pigmentosa. In these mice, horizontal cells looked normal until postnatal day (p) 11, but started growing neurites into the ONL 1 day later. At p28, the number of sprouting processes decreased, but the remaining sprouts developed synapse-like contacts at rod cell bodies, with an ultrastructural appearance reminiscent of ribbon synapses. Hence, neurite outgrowth and ectopic synaptogenesis in the A3B1 retina were precisely timed events starting at p12 and p28, respectively. We therefore performed microarray analysis of retinal gene expression in A3B1 and wild-type mice at those ages to evaluate the genomic response underlying these two events. This analysis identified 163 differentially regulated genes in the A3B1 retina related to neurite outgrowth or plasticity of synapses. The global changes in gene expression in the A3B1 retina were consistent with activation of signaling pathways related to Tp53, Smad, and Stat3. Moreover, key molecules of these signaling pathways could be localized at or in close proximity to outgrowing neurites. We therefore propose that Tp53, Smad, and Stat3 signaling pathways contribute to the synaptic plasticity in the A3B1 retina.  相似文献   

18.
In chemical synapses, action potentials evoke synaptic vesicle fusion with the presynaptic membrane at the active zone to release neurotransmitter. Synaptic vesicle endocytosis (SVE) then follows exocytosis to recapture vesicle proteins and lipid components for recycling and the maintenance of membrane homeostasis. Therefore, SVE plays an essential role during neurotransmission and is one of the most precisely regulated biological processes. Four modes of SVE have been characterized and both positive and negative regulators have been identified. However, our understanding of SVE regulation remains unclear, especially the identity of negative regulators and their mechanisms of action. Here, we review the current knowledge of proteins that function as inhibitors of SVE and their modes of action in different forms of endocytosis. We also propose possible physiological roles of such negative regulation. We believe that a better understanding of SVE regulation, especially the inhibitory mechanisms, will shed light on neurotransmission in health and disease.  相似文献   

19.
Presynaptic differentiation takes place over three interrelated acts involving the biogenesis and trafficking of molecular complexes of active zone material, the “trapping” or stabilization of active zone sites, and the subsequent development of mature synapses. Although the identities of proteins involved with establishing presynaptic specializations have been increasingly delineated, the exact functional mechanisms by which the active zone is assembled remain poorly understood. Here, we discuss a theoretical model for how the trapping stage of presynaptic differentiation might occur in developing neurons. We suggest that subsets of active zone proteins containing polyglutamine domains undergo concentration-dependent prion-like conversions as they accumulate at the plasma membrane. This conversion might serve to aggregate the proteins into a singular structure, which is then able to recruit scaffolding agents necessary for regulated synaptic transmission. A brief informatics analysis in support of this ‘Q’ assembly hypothesis—across commonly used models of synaptogenesis—is presented.  相似文献   

20.
Summary The distribution of the 14-3-2 protein in rat brain synapses was studied by immuno electron microscopy. The protein was localized to the postsynaptic web and to the postsynaptic membrane, but was also prominent both in the presynaptic membrane and in the presynaptic densities. No significant activity was observed in the synaptic vesicles.Acknowledgments. Our sincere thanks to Mrs Ulla Svedin, Eng., for skilled technical assistance. This work was supported by grants from the Swedish Medical Research Council, the Medical Faculty of Göteborg, Tore Nilson's Foundation for Medical Research and by the Swedish-Italian Group of Neurobiology. A. G. received financial support from Consiglio Nazionale delle Ricerche (CNR, ROME).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号