首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper carries out studies about LA-ICPMS U–Pb dating and Hf isotopic compositional analysis for detrital zircons in two metasedimentary samples that were taken from the Zhaochigou Formation-complex in the Helan Mountain.The results show that the Zhaochigou Formation-complex formed*1.96 Ga,and it is a part of the Khondalite Series that is widespread in the North China Craton(NCC).The age spectrum of the detrital zircons indicates that the Zhaochigou Formation-complex shared the same provenance with the eastern edge of the Khondalite Series.Products of ancient magmatic activities within the Khondalite Belt may be the major source for the sedimentary materials that formed the Khondalite Series.Our age-dating results suggest that the Khondalite Series in the NCC may have experienced two stages of metamorphism,as the early stage occurred during 1.96–1.95 Ga,and the later stage occurred at about 1.87 Ga.The Hfisotopic data indicate that the Western Block of the NCC endured a stage of crustal growth at 2.5–2.3 Ga.  相似文献   

2.
Clastic sediments and sedimentary rocks are widely used for understanding the formation and evolution of the continental crust. The Tietonggou Formation outcrops in the Xiaoqinling region at the southern margin of the North China Craton (NCC) and has unconformable contacts with the underlying Taihua Complex and overlying Paleoproterozoic Xiong’er Group. It mainly consists of quartzite and its protoliths are mature terrigenous clastic rocks. On the basis of the ages of the youngest detrital zircons from the quartzites and the ages of the Xiong’er Group, the depositional ages of the protoliths of the Tietonggou Formation were well constrained to 1.91–1.80 Ga. The U-Pb isotopic data of detrital zircons from the Formation show a major age peak at ~2.1 Ga, which is consistent with 2.2–2.0 Ga magmatism in the Trans-North China Orogen of the NCC. Taking into account the texctural and compositional maturity of the Tietonggou Formation quartzite, the ~2.1 Ga lithologic units in the Trans-North China Orogen are interpreted as the major source of the Tietonggou Formation. The majority of these ~2.1 Ga detrital zircons mostly have high δ 18O values (>6.5‰) and negative ? Hf(t) values (?7.8–0.0), with corresponding Hf model ages significantly older than their crystallization ages, indicating that these zircons formed from the partial melting of ancient continental crust. The majority of the 2.8–2.7 Ga and ~2.5 Ga detrital zircons from the Tietonggou Formation had positive ? Hf(t) values, and mantle-like δ 18O values, suggesting that the NCC has experienced two stages of significant crustal growth in the Neoarchaean at 2.7 and 2.5 Ga, respectively. The Hf isotopic data of detrital zircons from Paleoproterozoic metasedimentary rocks in the Trans-North China Orogen varied mainly toward the reduction of the radiogenic Hf isotope and gradually show a similar trend of the isotope trajectories of crustal evolution. This reveals that the NCC probably has not developed a long-lived subduction to complete the final assembly of the NCC. Alternatively, these maybe imply that the tectonic setting of the NCC substantially changed at ~2.1 Ga, the reduction of the radiogenic Hf isotope could be attributed to the rollback of the subducting slab.  相似文献   

3.
U-Pb dating for fifty-six detrltsl zircons from a paragneiss in Nanxiong area, northern Guangdong Province, Indicates that the latest Neoproterozoic sediments in Cathaysia hinterland are composed of numerous Grenvillian and Necerchaean clasUc materials, as well as some Mesoproterozolc detritus. Minor Paleoarchaean (3.76 Ga) and Mesoarchaean (3.0-3.2 Ga) zircons, which are the oldest zircons In South China, also are firstly found in the sediments, suggesting that the Cathaysia Block may contsln very old materials. The Hf isotope compositions of thirty-seven zircons reveal that these clastlc materials have different origins. Minor zircons crystslllzed from magma generated from relatively juvenile crust, while the parental magma of most zircons was derived from ancient crust. Integration of U-Pb dating and Hf Isotope analysis of these zircons suggests that the generation of juvenile crust in the Cathaysia block mainly occurred at 2.5-2.6 Ga. Mesoarchaean (3.0-3.3 Ga), late Paleoproterozolc (-1.8 Ga) and Paleoarchaean (-3.7 Ga) may also be important episodes of crustal growth. Grenvllllan magmatism is extremely Intense, but it mainly involved recycling of ancient crustal components with little formation of Juvenile crust. The marked presence of -2.1 Ga Hf model ages and the absence of the zircons with crystsllizatlon ages at -2.1 Ga suggest that the parental magma of many zircons was probably derived from the mixed source consisting of Neoarchaean and late Paleoproterozoic materlals.  相似文献   

4.
Li  HongYan  Xu  YiGang  Huang  XiaoLong  He  Bin  Luo  ZhenYu  Yan  Bin 《科学通报(英文版)》2009,54(4):677-686
LA-MC-ICPMS U-Pb dating has been performed on detrital zircons from the Upper Carboniferous Tai-yuan Formation (N-8) in the Ningwu-Jingle Basin, west of the North China Craton (NCC). The ages of 72 detrital zircon grains are divided into three groups: 303―320 Ma (6 grains), 1631―2194 Ma (37 grains, peaked at 1850 Ma), 2318―2646 Ma (29 grains, peaked at 2500 Ma). Detrital zircons of Group 2 and Group 3 were likely derived from the basement of the NCC. Group 1 zircons exhibit 176Hf/177Hf ratios ranging from 0...  相似文献   

5.
The architecture and growth history of Precambrian crustal basements in the Central Tianshan Block play a key role in understanding the tectonic evolution of the Chinese Tianshan Orogenic Belt.In this study,we present precise LA-ICP-MS zircon U–Pb dating and LAMC-ICPMS zircon Hf isotopic data for two granitic gneisses from Alatage area in the Central Tianshan Block.The magmatic zircons from both samples yield similar protolith ages of 945±6 and 942±6 Ma,indicating that the early Neoproterozoic magmatism is prevailed in the Alatage area.These zircons have crustal Hf model ages of1.82–2.22 and 1.70–2.03 Ga,respectively,which are significantly older than their crystallization ages.It indicates that their parental magmas were derived from the reworking of ancient crust.However,we suggest that these Paleoproterozoic Hf model ages might result from mixing of continental materials with different ages in the Neoproterozoic crust.The inherited(detrital)zircon cores not only yield a wide age range of ca.989–1617 Ma,but also exhibit large Hf-isotope variations with Hf model ages of1.54–2.30 Ga.In particular,some 1.4–1.6 Ga zircons show high initial176Hf/177Hf ratios,consistent with those of depleted mantle,which indicates that the Mesoproterozoic event involved both reworking of older crust and generation of juvenile crust.The Central Tianshan Block has different Precambrian crustal growth history from the Tarim Craton.Therefore,it would not be a fragment of the Precambrian basement of the Tarim Craton.  相似文献   

6.
Using in situ zircon dating by LA-ICP-MS and MC-ICP-MS, detrital zircon of 3981±9 Ma age was found in metamorphic rocks of the Ningduo Rock Group, Changdu Block of Northern Qiangtang. This is the oldest age record that has been found in the Qiangtang area. This finding also constitutes the third zircon locality in China with an age older than 3.9 Ga. Thus, the discovery provides new information for the study of Hadean crust. In addition, we found 3.51–3.13 Ga, ∼2440 Ma, ∼1532 Ma, ∼982 Ma and ∼618 Ma age peaks from 100 test spots. The younger ages of ∼982 Ma and ∼618 Ma correspond to the formation of the Rodinian super-continent and the Pan-African event, respectively. These findings suggest a close relationship between these zircons and the Gondwanan super-continent. The age of ∼618 Ma defines the lower limit on the deposit time of the protolith for the garnet-mica-quartz schist in the Ningduo Rock Group. Zircons with an age of ∼982 Ma generally display a negative ɛHf(t) and a two-stage Hf model with concentrated ages around 1933–2553 Ma. This pattern indicates that the source area of the Ningduo Rock Group underwent a significant separation of depleted mantle into the crust during the Paleoproterozoic Era. However, zircons with ages of 2854–3505 Ma also show a negative ɛHf(t) and a two-stage Hf model with a concentration of ages around 3784–4316 Ma. These results demonstrate that the source area of the Ningduo Rock Group contains a residual amount of ancient (Hadean) crustal materials. This paper provides new information on the relationship between the basement of the Qiangtang area and the Paleoproterozoic basements of the Gangdese and Himalayan regions, which constrains the northern boundary of Gondwana.  相似文献   

7.
Zircon U-Pb age and Hf isotope, and major and trace element compositions were reported for granite at Quanyishang, which intruded into the Kongling complex in Yichang, Hubei Province. The results show that the Quanyishang granite is rich in silicon and alkalis but poor in calcium and magnesium, and displays enrichment in Ga, Y, Zr, Nb but depletion in Sr and Ba, exhibiting the post-orogenic A-type affinity. 90% zircons from the granite are concordant, and give a middle Paleoproterozoic magmatic crystallization age (mean 1854 Ma). Initial Hf isotope ratios (176Hf/177Hf)i of the middle Paleoproterozoic zircons range from 0.280863 to 0.281134 and they have negative eHf(t) values with a minimum of -26.3. These zircons give the depleted mantle model ages (TDM) of 2.9―3.3 Ga (mean 3.0 Ga), and the average crustal model ages (Tcrust) of 3.6―4.2 Ga (mean 3.8 Ga). A Mesoarchean grain with 207Pb/206Pb age of 2859 Ma has a slightly high TDM (3.4 Ga) but similar Tcrust (3.8 Ga) to the Paleoproterozoic zircons. All these data suggest that the source materials of the Quanyishang A-type granite are unusually old, at least ≥2.9 Ga (even Eoarchean). The event of crustal remelting, which resulted in the formation of the Quanyishang granite in the middle Paleoproterozoic, recorded the cratonization of the Yangtze conti-nent. The process may have relation to the extension and collapse of the deep crust with Archean ages, in response to the transition stage of the assembly and breakup of the Columbia supercontinent.  相似文献   

8.
Zircon U-Pb dating indicates that the fuchsite quartzite in eastern Hebei Province was derived from weathering and erosion of the 3.6-3.8 Ga granitic rocks. In-situ zircon Hf analyses show that the Lu-Hf isotopic system remained closed during later thermal disturbances. Zircons with concordant ages have Hf isotopic model ages of about 3.8 Ga, suggesting a recycling of this ancient crust. The -3.8 Ga zircons have similar Hf isotopic compositions to those of chondrite, indicating that their source rocks (granitic rocks) were derived from partial melting of the juvenile crust which originated from a mantle without significant crust-mantle differentiation. Therefore, it is proposed that there was no large-scale crustal growth before -3.8 Ga in eastern Hebei Province. Considering zircon Hf isotopic data from other areas, it is concluded that the most ancient crust in the North China Craton probably formed at about 4.0 Ga, and the possibility to find crust older than 4.0 Ga is very limited.  相似文献   

9.
Chaotiehe gabbroic intrusion in the eastern part of Liaoning Province was dated by the zircon SHRIMP U-Pb technique. The results gave an emplacement age of 126±4 Ma, indicating that the intrusion thus formed during the lithospheric thinning of the North China Craton (NCC) in the Early Cretaceous rather than in a rifting setting during the Paleoproterozoic as previously thought. The gabbroic intrusion contains abundant old zircons with Paleoproterozoic (2.10–2.46 Ga and ca. 1.87 Ga) and Neoproterozoic (747–969 Ma) ages. The Paleoproterozoic zircons were probably derived from NCC itself, whereas the Neoproterozoic ones were likely from materials of the Yangtze Craton that had previously been subducted beneath NCC. These geochronological dates are of important implications for understanding the Mesozoic crustal evolution of NCC.  相似文献   

10.
This paper presents geochemical analyses of a lamprophyre intruding the Caledonian Doushui granite body in Shangyou County, southern Jiangxi Province. U-Pb dating and Hf-isotope analyses are espe-cially carried out for zircons from it. Petrological and geochemical features show that the lamprophyre belongs to a high-K, weakly alkaline pyroxene-biotite lamprophyre. It is characterized by high Mg# (0.74), Ni (253 μg/g) and Cr (893 μg/g) contents, and also enriched in incompatible elements, such as REE, Rb, Sr...  相似文献   

11.
Widely distributed on the southern margin of the North China Craton, the Taihua complex extends roughly in an east-west direction and the relatively complete successions are found in Lushan County, Henan Province. Like many other Archean terranes, the Taihua Complex can be divided into two major lithological units along the Dangze River, namely gneisses series and supracrustal rocks. The former is located on the north side of the river and chiefly composed of TTG gneisses and amphibolites; the latter on the south side of the river is mainly supracrustal rock. Coupled with the previous studies, the results obtained by this study show that the Taihua complex was formed in a large time span from Neoarchean to Palaeoproterozoic. The TTG gneisses and amphibolites are dated at Neoarchean (2794–2752 Ma). The 2.9 Ga and 3.1 Ga zircons in amphibolites could be xenocrysts. In the North China Craton, the 2.8–2.7 Ga old rocks crop out in several areas e.g. western Shandong Province, Jiaodong Peninsula and Lushan area of Henan Province. In addition, 2.8–2.7 Ga detrital zircons or xenocryst zircons have been recognized in Huai’an, Fuping, Wutai areas of North China Craton and also reported in the Early Paleozoic diamondiferous kimberlites in Mengyin and Fuxian. All these age results indicate that the 2.8–2.7 Ga rocks may have been developed much broader region than today’s outcrops. Zircon Hf and whole rock Nd isotopes show that the 2.8–2.7 Ga tectono-thermal event represents an important period of crustal growth with minor ancient crust reworked in the North China Craton. However the formation of supracrustal rocks is limited to 2.2–2.0 Ga in the Palaeoproterozoic time, not the Archaean, as previously believed. Combined with the chronological data of aluminium-rich metamorphic rocks (Khondalite series) on the southern margin of the North China Craton and adjacent areas, it is suggested that the above areas have widely developed Paleoproterozoic passive continental margin environment.  相似文献   

12.
A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterized by zoning, higher Th/U ratios (mostly≥0.1), HREE enrichment, and positive Ce and negative Eu anomalies, and show features similar to magmatic or anatectic zircons. Apparent ^206Pb/^238U ages for the zircons are 447±2 Ma (95 % conf., MSWD=0.88), corresponding to a Caledonian event. εHf(t) values are -13.3 to -9.7, indicating a crustal source. Two-stage Hf model ages are 1.7 to 1.9 Ga, suggesting that protolith of the migmates was probably formed in the Paleoproterozoic. The granodioritic neosomes have the characteristics of peraluminous calc-alkaline granite, and their REE patterns and trace elements spidergrams show features of middle to upper crustal rocks. Together with previous studies, we conclude that the protolith of the Cathaysia basement in the Tianjingping area was likely formed in the middle-late Paleoproterozoic and experienced partial melting during the Caledonian period. The recognition of Caledonian reworking of the Paleoproterozoic basement in the Cathaysia Block provides a new insight into the tectonic evolution of the Cathaysia Block in the Caledonian period and the interaction between the Cathaysia Block and the Yangtze Block.  相似文献   

13.
The Mesoproterozoic Changcheng System is widely distributed in the North China Craton. Determining its time of deposition and sources is important to understand the Precambrian crustal evolution of the North China Craton. This paper suggests age distribution patterns for detrital zircons from clastic sediments of the Changcheng System in the Ming Tombs area, Beijing. Samples of feldspar-bearing sandstone (CHc-2) and pure sandstone (CHc-9) were collected from the Changzhougou Formation, which constitutes the basal part of the Changcheng System. Detrital zircons show an age range from 2.35 to 2.60 Ga. However, sample CHc-9 in the upper Changzhougou Formation also contains some zircons with ages of 1.9-1.8 Ga and 2.3-2.1 Ga. The age patterns lead to the following conclusions: (1) Most of the detrital material came from a source area composed predominantly of -2.5 Ga continental crust of the North China Craton; (2) 1.9--1.8 Ga reflects the age record of Palaeoproterozoic continent-continent collisional event in the North China Craton; and (3) the oldest age for deposition of the Changcheng System is 1.8 Ga.  相似文献   

14.
Peng  Min  Wu  YuanBao  Wang  Jing  Jiao  WenFang  Liu  XiaoChi  Yang  SaiHong 《科学通报(英文版)》2009,54(6):1098-1104
Mafic dyke is a sign of regional extension, and thus has important tectonic significance. A great amount of mafic dykes occur in the Kongling terrain of the Yangtze Craton, which have great bearing on the early evolution of the Yangtze Craton. Their ages, however, have not been well constrained. In this paper we report an integrated study of zircon U-Pb age and Hf isotope compositions for a mafic dyke in the Kongling terrain. The zircons yielded a weighted mean 207Pb/206Pb age of 1852±11Ma, which represents its intrusion age. They have ɛ Hf(t) values of −6.3 to 0.5, with a weighted mean of −3.06±0.88, suggesting that the mafic dyke came from metasomatic mantle. The results indicate that the Yangtze Block had transformed into post-collisional extensional regime at ca. 1850 Ma. In the same period, the Yangtze Craton shows enough rigidity to produce brittle rupture, and thus has the characteristics of a craton. Supported by National Natural Science Foundation of China (Grant Nos. 40772042, 90714010 and 40521001), the Ministry of Education of China (Grant Nos. IRT0441, B07039 and NCET-06-0659), and Foundation of the State Key Laboratory of Continental Dynamics, Northwest University  相似文献   

15.
A combined study of zircon LA-ICP-MS U-Pb dating, trace elements and Hf isotope was carried out for gneissic granite from the Sanzhishu area in Jingning, SW Zhejiang Province. Nearly all the zircons separated from the granite exhibited oscillatory zoning and high Th/U ratios (>0.1). The REE profile showed a pronounced positive Ce anomaly, negative Eu anomaly and an enrichment of HREE, which are typical characteristics of magmatic zircon. Thirteen concordant or nearly concordant analytical data yielded a weighted mean 207Pb/206Pb age of 1860±13 Ma (MSWD=0.084), representing the formation age of the granite. The magmatic zircons had negative εHf(t) values of −15.6 to −10.0 and two-stage Hf model ages of 3.1 to 3.4 Ga, indicating that the granites were formed by reworking of ancient crust. The major- and trace-element data indicate that the gneissic granites are metaluminous high-K calc-alkaline rocks and exhibit the same geochemical characteristics as aluminous A-type granites, implying the emplacement of the granite in a post-orogenic extensional tectonic setting. We conclude that the Paleoproterozoic crustal reworking event in the Cathaysia Block of South China marked the transition from assembly to break-up of the Columbia supercontinent. Supported by National Natural Science Foundation of China (Grant No. 40873004), Special Funds for National Scientific Research of Commonweal Industries, the Ministry of Land and Resources of China (Grant No. 2008110015), Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (Grant No. 06LCD12) and the Project of Land and Resources Bureau of Zhejiang Province (Grant No. 2004005)  相似文献   

16.
Oxygen isotopic compositions of zircons from pyroxenite (~145 Ma) of Daoshichong, Dabieshan have been measured by an ion microprobe. Both within the single grain and among different grains, oxygen isotopic ratios are homogeneous, δ 18O = (7.66‰±0.46)‰ (1 SD, 1 σ = 0.10, n = 22). High δ 18O values indicate that the mantle-derived parent magma of Daoshichong pyroxenite have undergone interaction with crustal materials. Combing with other geochemical constraints, the way of crust-mantle interaction is suggested to be source mixing other than crustal contamination. The time interval between crust-mantle interaction and formation of the parent magma of Daoshichong pyroxenite is less than several million years. The crustal component involving in crust-mantle interaction is mafic lower crust, and the parent magma of pyroxenite possibly contain large proportion (>37%) of such lower crust.  相似文献   

17.
The East Junggar is an important part of the Central Asian Orogenic Belt(CAOB).Using in situ zircon dating and Hf isotopic analysis by LA-ICP-MS and MC-ICP-MS,respectively,a detrital zircon of 4040 Ma age was found in sedimentary sequences from the Aermantai ophiolitic mélange,East Junggar.This is the oldest age record in the East Junggar terrane,and also marks the first zircon locality in the CAOB with an age older than 4.0 Ga,which is attributed to the Hadean crust.The 4040 Ma detrital zircon has anεHf(t)value of–5.2 and a two-stage Hf modal age of 4474 Ma,suggesting the presence of very old(Hadean)crustal material in the source area.Beside peak ages of 446 Ma,we found four age groups of 3.6–3.1 Ga,2.53–2.37 Ga,1.14–0.89 Ga and 0.47–0.42 Ga from 141 effective measuring points.The age of 426±4 Ma for the five youngest detrital zircons defines the lower limit of the deposition time of sedimentary sequencess in the Aermantai ophiolitic mélange.The 0.47–0.42 Ga zircons exhibit176Hf/177Hf ratios of 0.282156 to 0.282850,corresponding to variableεHf(t)values from–9.3 to 12.0 and Hf model ages from2011 to 646 Ma.These characteristics are similar to those of the early Paleozoic igneous and gneissic zircons from the Altai,but significantly different from those of the East Junggar.Based on the material structures of felspathic greywacke,the morphology,internal texture and age distributions of dated detrital zircons,in combination with a study of the regional geological data,it is suggested that the sedimentary sequences in the Aermantai ophiolitic mélange was deposited in the Late Silurian,with the main provenance from the Altai Orogen in the north.This indicates that the early Paleozoic ocean represented by the Aermantai ophiolitic mélange was readily closed during the Late Silurian,and the northern edge of the East Junggar terrane was accreted to the Altai Orogen.The joint of them then served as a marginal orogen in the southern edge of the Siberia Paleocontinent.  相似文献   

18.
Zircom U-Pb age and Hf isotope analyses were made on gneissic granite and garnet-mica two-feldspar gneiss from the Helanshan Group in the Bayan Ul-Helan Mountains area, the western block of the North China Craton (NCC). Zircons from the gneissic granite commonly show core-mantle-rim structures, with magmatic core, metamorphic mantle and rim having ages of 2323±20 Ma, 1923±28 Ma and 1856±12 Ma, respectively. The core, mantle and rim show similar Hf isotope compositions, with single-stage depleted mantle model ages (TDM1) of 2455 to 2655 Ma (19 analyses). Most of the detrital zircons from the garnet-mica two-feldspar paragneiss have a concentrated U-Pb age distribution, with a weighted mean 207Pb/206Pb age of 1978±17 Ma. A few detrital zircons are older (2871 to 2469 Ma). The age for metamorphic overgrown rim was not determined because of strong Pb loss due to their high U content. The zircons show large variation in Hf isotope composition, with TDM1 ages of 1999 to 3047 Ma. In com- bination with previous studies, the main conclusions are as follows: (1) protolith of the khondalite se- ries in the Helanshan Group formed during Palaeoproterozoic rather than the Archaean as previously considered; (2) The results lend support to the contention that there is a huge Palaeoproterozoic Khondalite (metasedimentary) Belt between the Yinshan Mountains Block and the Ordos Block in the Western Block of NCC; (3) The widely-distributed bodies of early Palaeoproterozoic orthogneisses in the Khondalite Belt might be one of the important sources for detritus material in the khondalite series; (4) Collision between the Yinshan Block, the Ordos Block and the Eastern Block occurred in the same tectonothermal event of late Palaeoproterozoic, resulting in the final assembly of the NCC.  相似文献   

19.
The volcanic rocks of the Xiong‘er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolutionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong‘er Group formed in 1.80--1.75 Ga of Paleo-Proterozoic. Since the Xiong‘er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong‘er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. Numerous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.  相似文献   

20.
近10年在恒山和五台地区所获得的大量同位素年代学资料,统计发现恒山杂岩的同位素年龄峰值比五台杂岩大致要年轻20 Ma, 这与恒山-五台地区为岛弧根带-岛弧关系的推论相符合。综合各种不同的同位素测年结果按不同的地质体,进行了图解分析,将恒山-五台地区早前寒武纪的地质演化划分为3个大的阶段:2.70~2.60 Ga,早期演化(洋壳形成?);2.55~2.52 Ga(?,最晚不晚于2.45 Ga),东西陆块俯冲碰撞阶段;2.50~1.75 Ga,早期盖层演化阶段。最后一个阶段有可以根据不同时段内研究区主要事件的不同,将2.50~1.75 Ga的演化分为5个时期。1)2.50~2.30 Ga表现为间歇性大陆溢流玄武岩的活动期;2)2.30~2.20 Ga华北较稳定沉降期,基本以接受沉积为主;3)2.20~2.10 Ga,构造活化期,五台地区主要有伸展非造山花岗岩(大洼梁花岗岩)的形成;4)2.10~1.85Ga阶段,地幔柱活动期? 5)1.86~1.75 Ga,大规模基性岩墙形成期陆块裂解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号