首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
考虑耦合阻尼系统{x″+p1(t)x'+q1(t)x=f1(t,y)+e1(t),y″+p2(t)y'+q2(t)y=f2(t,x)+e2(t).周解期的存在性问题.其中pi,qi,ei∈L1(R)是T-周期函数,fi∈Car(R×R+,R)(i=1,2)在原点具有奇异性.运用Schauder不动点定理和fi的奇异性,证明该系统存在周期解.  相似文献   

2.
平面非自治Hamilton方程的Lagrange稳定性   总被引:2,自引:0,他引:2  
研究了平面非自治Hamilton方程dx/dt=H/y(x,y,t),dy/dt=-H/x(x,y,t)的稳定性.其中:Hamilton函数H(x,y,t)=x2m/2m+y2n/2n+H1(x,y,t);H1是关于x和y的多项式,关于t为C∞且满足H1(x,y,t+1)=H1(x,y,t).证明了当H1关于x和y的次数满足一定条件时,该平面非自治Hamilton方程具有Lagrange稳定性.  相似文献   

3.
本文研究具有非对称项的平面系统{x'=f(y)+p1(t,x,y),y'=-g(x)+p2(t,x,y)周期解的存在性.在新的非共振条件下,应用连续性定理证明了该系统至少存在一个周期解.  相似文献   

4.
研究二阶迭代微分方程 x+g(x(x) ) =p(t) T-周期解的存在性 ,其中 g,p均连续 ,p(t+T) =p(t) ,且∫T0p (t) dt=0 .主要方法是先估计解的先验界 ,再用 Mawhin连续性定理得出周期解的存在性 .在对 g要求更宽松的条件下 ,得到了方程 T-周期解存在的充分条件 .  相似文献   

5.
设t是正整数,λ∈{±1}.运用Pell方程的性质证明了方程x2-(t2-λt)y2-(4t-2λ)x+(4t2-4λt)y=0有无穷多组解(x,y),并且给出该方程的全部解.  相似文献   

6.
考虑具有无穷时滞泛函微分方程d2xdt2=a(t,x(t))x(t)+p(t,xt)+ddt∫0-∞q(s,x(t+s))ds.利用重合度理论,得到方程存在ω-周期解的一个充分条件为:p有界,β0>0,且(β1ω+q)ω<1,其中q=∫0-∞sup|u|<∞| q(s,u) u|ds,β0=inf(t,x)∈R2|a(t,x)|,β1=sup(t,x)∈R2|a(t,x)|.特别地,当a(t,x)≡a(t),q(s,u)≡0时,得到方程存在唯一ω-周期解的一个充分条件为:p有界,β0>0,β1ω2<1且(p(t,φ1)-p(t,φ2))(φ1(0)-φ2(0))≥0,(t,φ1),(t,φ2)∈R×BCh,其中β0=inft∈Ra(t),β1=supt∈Ra(t).  相似文献   

7.
利用重合度理论,研究一类具有偏差变元的二阶微分方程x″+f(t,x′(t))+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.其中,f,g∈C(R×R,R),且对任意的x∈R,g(t+ω,x)=g(t,x),p∈C(R,R),τ∈C(R,R)是ω-周期的.在不要求对所有的y∈R,函数f(t,y)≤0(f(t,y)≥0),t∈R的情况下,得到该类方程至少存在一个ω-周期解的充分条件.  相似文献   

8.
研究一类具有偏差变元的二阶微分方程x″(t)+f(x′(t))+h(x(t))x′(t)+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.通过应用Schwarz不等式,Minkowski不等式,以及重合度理论,在满足一定条件下,得到方程至少存在一个T-周期解的新结果,且其周期解存在性的充分条件并不要求h(x)是有界函数.  相似文献   

9.
奇异方程x″+p(t)f(x)+q(t)g(x′)=0的可解性   总被引:1,自引:0,他引:1  
设p(t),q(t)∈C((0,1),(0,+∞)),f(x),g(y)∈((0,+∞),(0,+∞)),并且满足下列条件(1)f(x)是x的减函数,存在正数b>0,使得f(rx)≤r-bf(x),对任意(r,x)∈(0,1)×(0,+∞),limx→0+xbf(x)>0;(2)g(y)是y的减函数,limy→0+g(y)=+∞.则下列奇异边值问题x″+p(t)f(x)+q(t)g(x′)=0,0<t<1,x(0)=x′(1)=0.有唯一C1[0,1]正解的充分必要条件是t-bp(t)∈L1[0,1],q(t)∈L1[0,1].  相似文献   

10.
本文研究一类含有非线性局部顶的抛物型m-Laplacian方程的柯西初值问题{ut=div(|▽u|m-2▽u) ∫RNK(x,y)up(y,t)dy x ∈RN,t》0/u(x,0)=u0(x),x∈RN,u(x,t)≥0(x,t)∈RN×R (0.1)的非负整体解的不存在性问题.从两个角度出发,研究参数p,β,m和初始条件u0(x)在无穷远处的渐近行为对问题(0.1)解的不存在性的影响.采用的方法是"试验函数法".该方法是由Mitidieri和Pohozaev在研究一类椭圆型不等式时首先提出.为了使该方法能够用于问题(0.1),需要作些修正.主要结果的证明是通过对解的先验估计,然后应用反证法提出.通过选择适当的试验函数以及变量伸缩,得到解的一个渐近估计和一个上界估计.这些估计依赖于参数T和ρ.最后让ρ→∞和对上界极小化,得出问题(0.1)的非负解的不存在性.作如下假设:(H1)存在 a0∈(0,1/2),使得当α∈(-α0,0),成立u0(x)≥0,u0 ∈L1 a loc(RN); (H2)存在K0》0,0《β《N使得K(x,y)=K(y,x)≥K0|x-y|β-N,x,y∈RN;(H3)存在K0》0,γ≥0 使得 K(x)≥K0(1 |x|2)-γ,x∈RN.主要结果是:定理1 假设2≤m《N,p》m-1和条件(H1),(H2)成立.进一步,如果下列条件之一满足:(H4)P《m-2 N m/N-β;(H5)存在依赖参数m,p,β的β0》0,使得lim inf|x|→∞(u0(x)|x|m β/p 1-m-α)≥β0;那么初值问题(0.1)不存在整体的非负解.当K(x,y)只是一个变量y的函数时,有定理2 假设2≤m《N,p》m-1和条件(H1),(H3)成立.进一步,如果下列条件之一满足:(H6)0≤γ《(N m)/2;(H7)存在依赖参数的m,p,γ的β2》0,使得lim inf|x|→∞(u0(x)|x|m N-2γ/P 1-m-a)≥β2;那么问题{ut=div(|▽u|m-2▽u) ∫RN K(y)up(y,t)dy x∈RN,t》0/u(x,0)=u0(x),x∈RN不存在整体有界的非负解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号