首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 68 毫秒
1.
针对中文文本中不同维度特征所携带的语义信息具有差异性的问题,本文提出一种基于多维度特征融合的中文文本分类模型:CCM-MF (Chinese-text Classification Model Based on Fused Multi-dimensional Features)。该模型融合层次维度和空间维度特征,以提高中文文本分类的准确率。首先,在层次维度上,使用预训练模型ERNIE (Enhanced Representation through Knowledge Integration)获取包含字、词及实体级别特征的词向量;然后,在空间维度上,将包含层次维度特征的词向量分别输入到改进后的深度金字塔卷积神经网络(Deep Pyramid Convolutional Neural Networks,DPCNN)模型及附加注意力机制的双向长短期记忆网络(Attention-Based Bidirectional Long Short-Term Memory Networks,Att-BLSTM)模型中,得到局部语义特征和全局语义特征;最后,将得到的空间维度特征分别作用于Softmax分类器,再对计算结果进行融合并输出分类结果。通过在多个公开数据集上进行实验,较现有主流的文本分类方法,本模型在准确率上有更好的表现,证明了该模型的有效性。  相似文献   

2.
基于词向量空间模型的中文文本分类方法   总被引:4,自引:0,他引:4  
大多文本分类方法是基于向量空间模型的,基于这一模型的文本向量维数较高,导致分类器效率难以提高。针对这一不足,该文提出基于词向量空间模型的文本分类方法。其主要思想是把文本的特征词表示成空间向量,通过训练得到词-类别支持度矩阵,根据待分文本的词和词-类别支持度矩阵计算文本与类别的相似度。实验证明,这一分类方法取得了较高的分类精度和分类效率。  相似文献   

3.
在少数民族语言信息处理领域,由于文本分类标注数据的稀缺,相关研究工作进展缓慢.为了充分利用有限的标注数据,更有效地挖掘出文本之间的关系,本文对藏文提出一种基于预训练模型和图卷积神经网络的长文本分类方法CINO-GCN.首先利用在实验数据集上经过微调的少数民族多语言预训练模型(Chinese Minority Pretrained Language Model, CINO)得到藏文长文本的初始文档向量和藏文音节向量.然后根据整个数据集范围的音节共现关系与音节和文档间的TF-IDF值来对藏文文本图进行建模.最后将文本图和结点特征一同输入至图卷积神经网络(graph convolutional networks, GCN)层,得到的文档表示经过Softmax得到分类结果.将该方法在公开的TNCC藏文新闻文本分类数据集上与当前几种主流的深度学习模型进行了多组对比实验,分类准确率达到73.51%,远优于其他基线模型;同时设计了消融实验验证模型各部分对分类结果的增益.实验结果表明,该文提出的模型能够结合预训练词向量和图神经网络的优势,显著提高藏文文本分类的准确率.  相似文献   

4.
基于汉字字频向量的中文文本自动分类系统   总被引:1,自引:0,他引:1  
提出了一种根据汉字统计特性和基于实例映射的中文文本自动分类方法。该方法采用汉字字频向量作为文本的表示方法。它的显著特点是引入线性最小二乘方估计(LinearLeastSquareFil,LLSF)技术建立文本分类器模型,通过对训练集语料的手工分类标引以及对文本和类别间的相关性判定的学习,实现了基于全局最小错误率的汉字———类别两个向量空间的映射函数,并用该函数对测试文本进行分类  相似文献   

5.
用文本分类的方法找出中文评教信息的情感倾向,使学生主观评价里蕴含的信息得到有效利用,是对现有评教系统的必要补充.采用基于潜在语义分析的方法对文本向量降维,并用支持向量机的分类方法对目标文本进行分类,得到每一条主观评价的情感倾向.分析了特征选择、特征抽取方法、降维维数、词性、训练集合与测试集合样本的比例等几方面对分类的影响,找到了较好的中文评教文本分类模型.  相似文献   

6.
基于人工标引的中文学术期刊文献自动分类算法   总被引:3,自引:0,他引:3  
为了解决期刊电子化的自动分类问题 ,提出了一种基于中文学术期刊人工标引的自动分类算法。这种算法主要利用自动分词得到各文献的特征词向量空间 ,并考虑到人工标引在分类中的关键作用 ,得到综合了特征词 TF和 IDF权重的分类准则。通过适当训练建立分类库 ,计算待分类样本与已知分类的相似性 ,判别各分类。实验表明 :该分类算法可以获得 85 %的分类识别率  相似文献   

7.
分析了文本自动分类的关键理论及技术,给出一个已实现的基于向量空间模型(VSM)的文本自动分类系统的框架模型,重点描述此系统的实现算法.此算法在训练阶段通过部分训练集确定向量的特征提取维数,并提出一种"平均值"匹配阈值调整方法,从而在精度和效率方面优于传统的分类算法.实验表明此系统查准率为91.8%,查全率为85%.  相似文献   

8.
基于改进分类模型的文本分类系统实现   总被引:1,自引:0,他引:1  
提出一种基于改进的分类模型的文本分类系统来实现文本的自动分类.针对传统的特征提取算法不能很好区分特征词在类内和类间分布情况的缺陷,该系统利用方差对该算法作了改进,用改进的特征提取算法量化各个特征词的权重,为了降低特征向量的维数,采用为每个类建分类器的分类模型,利用遗传算法来修正各个类特征词的权重,直到为每个类训练出能够代表本类的特征向量,最后用这些类的特征向量进行分类.通过在同一数据集上进行对比实验,说明本文提出的改进分类模型的文本分类系统是正确可行的.  相似文献   

9.
针对稀疏文本特征纬度高、特征稀疏程度大的特点,根据词、文档和所属类别的关系,建立训练样本的特征概率分布函数,通过基于内容的滤波器去除背景噪声和非关键词后,利用特征分类方法对稀疏文本进行分类.用线性回归的分类方法与其他传统分类方法进行了比较,结果表明,该特征分类方法能够有效提高稀疏文本的分类精度,尤其是与线性分类中的岭回归方法相结合时,分类精度更高.  相似文献   

10.
基于FOA-SVM的中文文本分类方法研究   总被引:2,自引:0,他引:2  
中文文本分类方法直接影响分类性能,支持向量机(SVM)在处理文本分类这种高维问题上有明显的优势.SVM的分类精度取决于核函数的核参数和惩罚参数,本文提出了一种用果蝇优化算法(FOA)获取SVM参数的FOA-SVM方法.将FOA-SVM用于中文文本分类,实验结果表明,FOA-SVM能得到较高的分类准确率,在文本分类上表现较强的鲁棒性.  相似文献   

11.
提出了一种基于特征项扩展的中文文本分类方法.该方法首先对文档的特征词进行分析,然后利用HowNet抽取最能代表主题的特征义原,接着根据这些义原对特征项进行扩展,并赋予扩展的特征项适当权值来说明其描述能力.最后利用扩展的特征项集提取特征进行分类.该文重点研究了如何抽取特征义原,如何给扩展项设定一个合适的权值.实验证明,该文方法能增加有效的特征项的数目,使分类正确率和稳定性均得到提高.  相似文献   

12.
尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破.但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从而导致最后分类效果不佳.此外,多版本预训...  相似文献   

13.
基于VSM的中文文本分类系统的设计与实现   总被引:25,自引:0,他引:25  
文本分类是指在给定分类体系下,根据文本的内容自动确定文本类别的过程。该文阐述了一个基于向量空间模型的中文文本分类系统的设计和实现。对文本分类系统的系统结构、预处理、特征提取、训练算法、分类算法等进行了详细介绍。引入标题权重系数改进词语权重,并提出了一种新的分类算法。实验测试结果表明查全率和准确率均达到90%左右,而且标题权重的引入和新分类算法的实施有效地改善了分类性能。  相似文献   

14.
互联网中出现的短文本内容短小,相互共享的词汇较少,因此在分类过程中容易出现大量的集外词,导致分类性能降低。鉴于此,提出了一种基于词矢量相似度的分类方法,首先利用无监督的方法对无标注数据进行训练得到词矢量,然后通过词矢量之间的相似度对测试集中出现的集外词进行扩展。通过与基线系统的对比表明,该方法的分类正确率均优于基线系统1%~2%,尤其是在训练数据较少的情况下,所提出的方法的正确率相对提高10%以上。  相似文献   

15.
研究了基于向量空间模型的自动文本分类方法,提出了位置权和词的位置区分度的概念,给出了一个带有位置信息的词权重计算方法,并给出了基于该方法的文本分类算法.实验结果表明,该方法是有效的,提高了文本分类的精度.  相似文献   

16.
针对传统方法未能考虑词向量的动态性及句子间交互不充分等问题,提出基于BERT预训练模型及多视角循环神经网络的文本匹配模型。通过BERT-whitening方法对BERT输出的句向量进行线性变换优化,并利用多视角循环神经网络将两句子不同位置的BERT动态词向量进行双向交互计算;将句向量与词粒度交互向量进行融合后计算结果。实验结果表明,提出的模型相较于对比模型有明显性能提升,实用性良好。  相似文献   

17.
针对文本分类问题,将朴素贝叶斯分类与自组织特征映射网络分类相结合,提出了基于相对特征的文本分类算法.该算法具有很快的速度和较高的准确率,从而为构建高效的搜索引擎提供支撑.  相似文献   

18.
针对基于词语特征的Email分类综合性能(F-score)较低的问题,提出一种基于主题特征的Email分类方法.该方法利用领域知识及统计信息,从Email的词语特征空间中提取主题特征,并利用提取出的主题特征实现Email分类.通过对1080封Email进行分类测试,结果表明,由于主题特征能够更加准确地表达Email的主题思想,因此,与基于词语特征的分类方法相比,该方法在针对Email的全文及标题实现分类时,将平均F-score分别提高了13.16%和17.16%,从而使平均F-score提高到72.37%,基本可以满足实际应用的需求.  相似文献   

19.
针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具GloVe获取融入词性的预训练词向量;然后,将词向量分别作为引入Self-Attention的BiGRU和TextCNN的输入,使用引入Self-Attention的BiGRU从文本的句法结构和文本的上下文信息两个方面综合提取全局特征,使用TextCNN提取文本的局部语义特征;最后,将全局特征和局部语义特征进行融合,并使用Softmax进行文本情感分类.实验结果表明,本文方法可以有效提高文本情感分析的准确率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号