共查询到17条相似文献,搜索用时 62 毫秒
1.
针对公路上高速行驶的车辆检测常常存在错检、漏检的问题,对YOLOv4算法进行改进优化.首先,将CSPDarknet53-tiny作为主干特征提取网络,并对网络中的ResBolck_body模块中的残差边与GhostModule模块结合代替原始特征网络CSPDarknet53,从而简化网络结构,同时提高其检测精度;然后,将原算法中的SPPNet模块结构替换为ASPPNet,增大网络感受野,降低参数计算量,使模型能够在保持精准度的同时更加轻量化;最后,将注意力机制模块SENet结构嵌入特征金字塔PANet的两个不同位置,使其可对不同重要程度的特征进行相应处理.在BDD100K数据集实验中,原YOLOv4算法训练后得到的模型的平均精度(AP)为88.27%,改进优化后的YOLOv4模型AP为90.96%,改进后的YOLOv4算法相比原算法AP提高了2.69%.在实际真实场景数据集实验中,改进优化后的YOLOv4算法比原算法AP提高了3.31%.实验结果表明,本文提出的方法可以有效提高YOLOv4算法对车辆目标检测的精度. 相似文献
2.
为实现航空玻璃纤维复合材料内部分层缺陷的智能识别,搭建了一种多自由度光纤耦合式太赫兹时域光谱系统,对带有模拟内部分层缺陷的样件进行检测,对检测结果图像进行了数据筛选、数据增强和数据标注,构建目标检测所用数据集.同时,提出了一种改进的YOLOv4算法,提高了缺陷智能识别的精度.实验结果表明,改进的YOLOv4算法在测试集得到91.05% 的准确率和92.02% 的召回率,分别较原YOLOv4算法提高了5.73% 和8.51%,具有更强的特征提取能力,并展现出良好鲁棒性,明显消除了应用原YOLOv4算法的错检、漏检现象. 相似文献
3.
扣件的健康状态是保障轨道车辆正常运行的关键。当前人工检测轨道扣件效率较低,具有缺陷性。针对这一问题,提出了基于改进YOLOv4算法的轨道扣件与检测。在YOLOv4网络中,利用CSPDarknet53第二个残差块嵌入conv卷积结构与YOLO头部结构,增加输出端,并进行网络中的上采样与下采样。与YOLOv4原算法模型相比,提升了准确率与检出率。将使用改进YOLOv4的方法,实现对有砟轨道与无砟轨道上扣件的状态检测。试验结果表明:基于改进YOLOv4算法检出率和准确率比原YOLOv4算法分别提升4.65%和4.88%,并且YOLOv4模型体积与其他模型相比更小,适用于轨道扣件检测。 相似文献
4.
为解决车辆识别中由于拍摄角度和距离的不同,导致成像后的车辆尺寸较小和车辆存在不同程度的遮挡,从而产生车辆的错检和漏检等问题,在单阶段目标检测网络YOLOv4(You Only Look Once version 4)算法的基础上,提出了基于注意力机制的递归YOLOv4目标检测算法,即RC-YOLOv4(Recursive and CBAM You Only Look Once version 4)算法。为提高算法对成像后小尺寸车辆的检测能力,在YOLOv4算法加入CBAM(Convolutional Block Attention Module)模块,该模块结合了通道和空间注意力机制,能帮助网络模型更加关注检测图像中的重点信息和小目标信息。针对车辆部分遮挡的检测问题,采用递归特征金字塔(RFP:Recursive Feature Pyramid)结构加强模型对深层特征信息提取能力,RFP结构类似于选择性增强或抑制神经元激活的人类视觉感知,将主干网络提取到的特征递归融合,然后反馈给主干网络,多次特征融合增强网络对上下文语义信息的提取整合能力。提高了对遮挡车辆的检测精度。实验结果表明,在自... 相似文献
5.
针对复杂交通场景下密集小目标居多、目标尺寸差异大、目标间遮挡严重的问题,提出了一种基于YOLOv4框架的复杂交通场景下的目标检测算法。首先,构造多尺度特征融合提取模块作为主干网络特征提取模块,充分提取不同尺度目标特征信息,同时引入轻量化Ghost模块对主干网络特征进行维度调整;其次,将卷积模块与自注意力机制融合,构造倒残差自注意力模块应用到主干网络深层,深层网络在充分提取局部特征信息基础上获得了全局感知;然后,构造轻量级混合注意力模块,抑制背景噪声,增强密集小目标检测能力;最后,在Udacity数据集上进行实验,检测精度达到了84.41%,相比较YOLOv4, mAP(mean average precision)提高了3.07%,对1 920×1 200分辨率图像的检测FPS(frames per second)可达到49,提高了22.5%,精度提升的前提下实现了较好的实时性,更适用于复杂交通场景下的目标检测任务。 相似文献
6.
针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型.首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改进为双尺度检测模型;其次,对双尺度检测模型进行正常训练,然后将其BN层的缩放因子进行稀疏... 相似文献
7.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。 相似文献
8.
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点. 相似文献
9.
为了解决车辆目标检测中准确率低的问题,提出了一种基于改进YOLOv5算法的车辆目标检测.改进后的YOLOv5算法主要是在原来的基础上通过K-means聚类的方法对数据集中的目标边框进行重新聚类、并将CIoU损失函数和DIoU_nms应用于YOLOv5算法来提高目标识别效果.改进后的YOLOv5算法,目标检测mAP达到了85.8%,比改进前的YOLOv5算法提升了1.3%. 相似文献
10.
针对YOLOv4目标检测器存在信息利用率不足的问题,提出了一种新的基于改进的路径聚合和池化YOLOv4的目标检测方法 YOLOv4-P。为了充分利用路径聚合可以有效防止信息丢失这个特点,对YOLOv4的路径聚合网络进行改进,利用主干特征提取网络的第二个残差块,新增一个检测层,加强融合浅层特征层。另外,使用K-means聚类对数据集重新进行处理,获得合适的先验框尺寸。此外,图像经过主干特征提取网络后的感受野比理论感受野小,为了增大感受野,在主干特征提取网络的后端加入金字塔池化模块,利用4种不同尺度的金字塔池化引入不同尺度下的特征信息。最后,在PASCAL VOC2007和VOC2012进行仿真实验,实验结果表明,提出的YOLOv4-P有效提高了检测精度。 相似文献
11.
道路裂缝和坑洞的检测是道路安全检查中的重要部分。针对道路实时检测中存在的漏检、错检等问题,本文提出一种基于改进YOLOv7的道路裂缝和坑洞检测算法。先将裂缝分为纵向、横向和网状裂缝,再使用可变形卷积(Deformable Convolutional Networks, DCN)替换原YOLOv7中特征提取网络里的卷积,使得形状差异较大且不规则的裂缝形状特征得到完整提取,提升裂缝的准确度;针对获取的图像中坑洞目标较小不易发现问题,通过先将边界框建模为高斯分布,再使用基于Wasserstein距离(Normalized Wasserstein Distance, NWD)的新的度量标准的小目标检测评估方法,提高坑洞的检测精度。实验结果表明,改进后的算法较原YOLOv7算法检测精度提高了4.1%,同时检测速度提高了17%,表现出更出色的检测效果。 相似文献
12.
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77ms,可以实现实时检测的目标. 相似文献
13.
针对传统钢材表面缺陷检测方法存在检测效率低、检测精度差等问题,提出一种基于改进YOLOv5的钢材表面缺陷检测算法。首先使用GhostBottleneck结构替换原YOLOv5网络中的C3模块和部分卷积结构,实现网络模型轻量化;其次在Backbone部分引入SE注意力机制,对重要的特征通道进行强化;最后针对数据集特点在网络中增加一个检测层,强化特征提取能力,并在Neck部分增加特征融合结构,使用DW卷积替换部分标准卷积以减少运算量。实验表明,改进的YOLOv5sGSD算法,模型体积减少了10.4%,在测试集上的mAP值为76.8%,相比原YOLOv5s网络提高了3.3%,检测精度和速度也明显高于一些主流算法。相比传统的钢材表面缺陷检测方法,提出的算法能够更加准确、快速地检测出钢材表面缺陷的种类和位置,并且具有较小的模型体积,方便于在移动端的部署。 相似文献
14.
针对YOLOv4算法在行人检测中精度低,实时性差的问题,提出一种基于YOLOv4的改进算法。首先将MobileNetv2作为主干网络,在减少参数量的同时保证其特征提取能力,同时在MobileNetv2中加入Bottom-up连接,减少浅层信息的丢失;然后在特征融合网络嵌入卷积模块的注意力机制模块(convolutional block attention module, CBAM)注意力机制,增强特征的表现力;最后在分类与回归网络中加入Inception结构,进一步提高检测速度和增加网络复杂度。结果表明:在VOC数据集上,改进算法比原算法检测效果更佳,实时性更好,其精度提高了2.87%,处理速度提升了29.52 FPS;同时在真实场景下构建的数据集上,改进后的算法比YOLOv4精度提高了2.13%,具有较好的鲁棒性。 相似文献
15.
针对SSD目标检测算法运用于自动驾驶领域时,在检测道路上小目标容易发生漏检错检的情况,本文提出一种改进的SSD目标检测算法。本算法首先在SSD模型的主干网络中嵌入感受野增强模块,扩大特征层的感受野,以获取更多小目标的特征信息;然后在主干网络后加入4次U型特征提取结构,构建4个不同层级的特征金字塔,最后合并成一个多层级特征金字塔用于检测。结果表明,该改进SSD模型在KITTI数据集上的检测精度较原始SSD模型提升了6%,检测速度达到了每秒27.9帧。在兼顾检测效率的同时,有效提高了对道路上小目标的检测精度,更适用于自动驾驶领域。 相似文献
16.
17.
针对自动驾驶场景下车载鱼眼相机采集到的图像存在畸变严重、场景复杂、尺度变化剧烈、小目标多以及传统的目标检测模型的检测精度不高的问题,提出了一种基于YOLOv5s改进的鱼眼图像检测模型YOLOv5s-R.首先,为解决小目标难识别的问题,提出随机裁剪多尺度训练的数据增强方法,该方法优于消融实验所得的最优数据增强方法.其次,为了提高模型的检测精度,在网络头部添加置换注意力机制与轻量化解耦头,增强模型对特征的提取能力与识别能力,并抑制噪声干扰.最后,模型额外增加角度预测项,实现旋转框目标检测.通过构建环形标签并用高斯函数对标签平滑,解决了旋转框角度的周期性问题;又对损失函数进行了优化,提出了RIOU,在CIOU的基础上增加角度惩罚项,提高了回归精度并加快了模型的收敛.实验结果表明,提出的YOLOv5s-R模型在WoodScape数据集上取得良好的检测效果,相比于原始的YOLOv5s模型,mAP@0.5、mAP@0.5∶0.95分别提升了6.8%、5.6%,达到82.6%、49.5%. 相似文献