首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
聚合物层状硅酸盐纳米复合材料的制备和应用   总被引:7,自引:3,他引:4  
介绍了聚合物层状硅酸盐纳米复合材料的制备、性能和应用.这种复合材料,以离子交换处理过的层状硅酸盐(通常是蒙脱土)为添加物,通过剥离-吸附、原位插层聚合和熔融插层等方法制备.这种新型纳米复合材料添加了含量较低的填充物,其力学性能、热稳定性、阻燃性等都有所提高.聚合物纳米复合材料展现出极其广阔的应用前景.  相似文献   

2.
在国家自然科学基金支持下 ,中国科学院化学研究所漆宗能研究员及其研究组成功发明了聚合物纳米复合材料的制备新方法 ,在多种高分子纳米复合材料的研究中取得理论研究和工业化开发突破性进展 ,为我国大幅度提高大品种塑料性能和工业技术水平 ,改善高分子材料的品种结构提供了新技术 ,对我国在该领域形成和发展自己的理论、拥有自主知识产权具有重要意义。漆宗能等采用插层复合法实现了高分子与层状硅酸盐片层在纳米尺度上的复合。复合过程中 ,如何将单体或聚合物插进蒙脱土层状硅酸盐片层之间 ,以形成厚度为1纳米 ,长、宽约为100纳米的…  相似文献   

3.
 在国家自然科学基金支持下 ,中国科学院化学研究所漆宗能研究员及其研究组成功发明了聚合物纳米复合材料的制备新方法 ,在多种高分子纳米复合材料的研究中取得理论研究和工业化开发突破性进展 ,为我国大幅度提高大品种塑料性能和工业技术水平 ,改善高分子材料的品种结构提供了新技术 ,对我国在该领域形成和发展自己的理论、拥有自主知识产权具有重要意义。漆宗能等采用插层复合法实现了高分子与层状硅酸盐片层在纳米尺度上的复合。复合过程中 ,如何将单体或聚合物插进蒙脱土层状硅酸盐片层之间 ,以形成厚度为1纳米 ,长、宽约为100纳米的片层并均匀分散在聚合物中是关键的一步。  相似文献   

4.
为了后期制得插层型或剥离型的聚合物/层状硅酸盐纳米复合材料,利用溶液搅拌法,将十六烷基三甲基溴化铵作为插层剂,对无机蒙脱土进行有机化改性,并对其进行红外光谱、热失重以及X射线衍射等进行表征分析.实验结果表明:插层剂已经成功插入到蒙脱土中,蒙脱土层间改性剂负载量约为4.59%,蒙脱土的层间距从1.347 nm扩大到2.122 nm.  相似文献   

5.
纳米粘土/聚合物复合材料的制备   总被引:1,自引:0,他引:1  
纳米粘土 /聚合物复合材料因其具有优异的性能是目前材料科学研究的热点 .简要回顾了纳米粘土 /聚合物复合材料研究的发展概况 ;以蒙脱土和高岭土为例 ,介绍了纳米粘土 /聚合物复合材料的制备方法和原理 ;并从热力学角度对插层复合过程进行了分析 ,在此基础上提出了影响插层反应的因素及插层剂的选择原则 .  相似文献   

6.
聚合物/层状无机物纳米复合材料研究进展   总被引:1,自引:0,他引:1  
从聚合物/层状无机物纳米复合材料的类型和制备方法、结构与性能表征等方面,总结了聚合物/层状无机物纳米复合材料的研究进展.利用插层复合原理制备各种聚合物/层状无机物纳米复合材料,赋予材料独特的结构,更优异的力学,热学,电、磁和光学及其气体阻隔性能,具有重要的科学意义和应用前景.  相似文献   

7.
聚合物纳米复合材料因其分散相的高度精细化和纳米尺寸效应而具有与传统复合材料明显不同的力学性能和功能性能。其中,层状硅酸盐聚合物纳米复合材料又以分散相的高形状系数比而具有更为突出或特异的性能,如高刚性、高强度、高阻隔、高阻燃性等。因此聚合物纳米复合材料自问世以来便受到各国学者和工业界广泛关注。在轮胎气密层橡胶中,可以充分利用纳米层状硅酸盐材料的高阻隔性,从而起到提高气密性的作用。更进一步的应用研究表明,可以通过使用纳米层状硅酸盐填充橡胶作为气密层,在不损失气密性的情况下,减少气密层厚度,从而降低轮胎重量,实现原价节俭和滚动阻力降低的双重效果。  相似文献   

8.
聚合物 /层状硅酸盐纳米复合材料因其优异的性能是目前材料科学研究的热点。本文介绍了层状硅酸盐的结构、聚合物 /层状硅酸盐纳米复合材料的类型及微观结构 ,重点介绍了聚合物 /层状硅酸盐纳米复合材料制备方法及性能的研究进展 ,指出需根据不同的聚合物 ,寻求经济可行的制备方法  相似文献   

9.
聚甲醛/二硫化钼插层复合材料的制备及其结晶行为   总被引:1,自引:0,他引:1  
采用原位插层聚合方法制备了聚甲醛/二硫化钼(POM/MoS2)纳米复合材料,探讨了POM在MoS2中的插层机理.由X射线衍射仪(XRD)和透射电镜(TEM)对复合材料的结构和形貌进行了表征.XRD谱图显示聚合物插入MoS2层间,层间距由0.613 nm扩大为1.118 nm;TEM照片表明所制备的POM/MoS2为插层型复合材料,MoS2在聚合物基体中分散良好且保持层状结构.利用差示扫描量热法(DSC)对POM及POM/MoS2纳米复合材料的非等温结晶动力学进行了研究,所得数据用修正Jeziorny法进行处理,发现MoS2的加入促进了POM的异相成核,提高了POM的结晶温度及结晶速率.  相似文献   

10.
本文概述了适于制备聚合物/层状无机物插层型纳米复合材料的主客体材料类型及聚合物插入到无机物层间的影响因素。简介了该复合材料的制备方法、结构和性能特征及潜在的应用前景。  相似文献   

11.
从聚合物/层状无机物纳米复合材料的类型和制备方法、结构与性能表征等方面,总结了聚合物/层状无机物纳米复合材料的研究进展。利用插层复合原理制备各种聚合物/层状无机物纳米复合材料,赋予材料独特的结构,更优异的力学,热学,电磁和光学及其气体阻隔性能,具有重要的科学意义和应用前景。  相似文献   

12.
采用熔融共混的方法分别制备了经两种有机插层剂(十八烷基季铵盐和双十八烷基苄基季铵盐)处理的交联聚乙烯/蒙脱土(XLPE/OMMT)纳米复合材料.不同插层剂处理的XLPE/OMMT纳米复合材料,介电谱表现出明显不同的特征:添加十八烷基季铵盐处理的蒙脱土,损耗峰为单峰;而添加双十八烷基苄基季铵盐处理的蒙脱土,损耗峰出现双峰.这与不同插层剂对蒙脱土在聚合物中的分散和插层效果有关.  相似文献   

13.
聚合物/层状硅酸盐纳米复合材料是功能化无机/有机纳米复合材料的典型代表.层状硅酸盐填料的加入会导致聚合物结晶性能的明显变化,进而对聚合物复合材料的使用性能产生显著影响.因此,对聚合物/层状硅酸盐纳米复合材料结晶性能和结晶动力学的研究具有极大的实际应用价值.本文以哈克转矩流变仪制备了具有长效抗菌功能的低密聚乙烯/醋酸洗必...  相似文献   

14.
将插层纳米复合技术与同步互穿聚合物网络(IPN)技术相结合,制备了聚氨酯(PU)/聚甲基丙烯酸甲酯(PMMA)/有机蒙脱土(OMMT)纳米复合材料.用透射电子显微镜(TEM)和力学性能测试研究了该复合材料和相应的PU/PMMA-IPN和PU材料的结构和力学性能.结果表明.PU/PMMA/OMMT纳米复合材料形成了插层/剥离型结构,其力学性能最优.对材料的制备工艺进行了研究,获得优化制备条件是:PU/PMMA质量比为60/40;OMMT,BPO,EGDMA添加量分别为单体MMA质量的5%,0.8%,2.0%,MOCA系数为0.9.  相似文献   

15.
以乳液原位插层聚合法和乳液共混法合成了聚丙烯酸酯/蒙脱土纳米复合材料.X射线衍射结果表明,聚合物能够有效地插层到未经处理的蒙脱土层间,且蒙脱土片层可以均匀地分散在聚合物中.TGA分析表明,纯丙烯酸酯/蒙脱土的热稳定性有所提高.  相似文献   

16.
本文采用插层聚合法制备了己内酰胺/钠基蒙脱石层状纳米复合物,通过Molau实验、高分辨率光学显微镜和富里叶变换红外分子光谱分析表征了该复合物的结构特征,并根据结构化学理论探讨其复合机理,获得了低维纳米复合材料主要是依靠分子间氢键作用把有机分子与层状硅酸盐组装在一起的结论,从而为其应用和开发提供了重要的理论依据。  相似文献   

17.
采用插层聚合方法制备了线性酚醛树脂/有机改性蒙脱土纳米复合材料,研究了不同的搅拌时间和配比对有机改性蒙脱土分散效果的影响,并用X射线小角衍射(XRD)和透射电子显微镜(TEM)测得其微观结构。热重分析(TG)测试表明,其构成的纳米复合材料比纯线性酚醛树脂具有更好的耐热性能。  相似文献   

18.
文章综述了一类新型潜在阻燃高分子材料--聚合物/无机物纳米复合材料。简述了这类材料的特征及制备方法,详述了PPgMA(顺丁烯二酸酐接枝聚丙烯)/LS(层状硅酸盐)及PS/LS两种纳米复合材料的阻燃性能,并讨论了材料结构与阻燃性的关系。  相似文献   

19.
本文采用原位乳液聚合方法制备了聚丙烯酸丁酯-有机蒙脱土,聚(甲基丙烯酸甲酯-衣康酸)(PBA-OMMT/P(MMA-ITA)纳米复合材料.利用X-射线衍射仪(XRD)、差示扫描量热仪(DSC)、傅立叶变换红外光谱(FT-IR)和热重分析(TGA)对复合材料进行了表征.结果表明:单体已插层进入有机蒙脱土层问发生聚合反应,使有机蒙脱土片层间距由原来的0.59nm增加到0.88nm以上, 且有机蒙脱土的加入能够显著提高纳米复合材料的玻璃化转变温度(Tg)和热稳定性能.  相似文献   

20.
通过原位聚合的方法制备了聚碳酸亚丙酯(PPC)/蒙脱土(MMT)复合材料.TEM分析表明蒙脱土片层是以纳米尺度分散在聚合物基体中,形成了纳米复合材料.热学和力学性能测试表明,与纯的PPC相比,含蒙脱土的聚合物纳米复合材料的热学和力学性能举得到明显改善,尤其是材料的拉伸强度得到大幅度提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号