首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
禽的鸣啭表现出一种复杂的学习过程,鸣禽学习鸣啭的过程可以分为两个阶段.在感觉学习期,幼鸟必须听到成鸟的鸣啭,并形成鸣啭模板记忆;在感觉运动学习期,鸣禽通过听觉反馈与模板匹配逐步建立稳定的鸣啭.对近年来鸣禽鸣啭学习过程的研究进展进行综述.  相似文献   

2.
鸣禽的鸣唱控制系统已成为研究神经系统与学习、行为和发育相关的一个重要模型.鸣禽的鸣啭表现出一种复杂的学习过程.鸣禽学习鸣啭的过程可以分为两个阶段.在感觉学习期,幼鸟必须听到成鸟的鸣啭,并形成鸣啭模板记忆;在感觉运动学习期,鸣禽通过听觉反馈与模板匹配逐步建立稳定的鸣啭.该文对近年来鸣禽鸣啭学习过程中的新生神经元及长时程增强研究进展进行综述.  相似文献   

3.
为确定雄性鸣禽前脑发声控制核团体积的侧别差异,进而为一侧优势提供形态学依据,以东北常见鸣禽栗鹀(Emberiza rutila)成体为实验材料,采用冰冻连续冠状切片、焦油紫染色、图像分析等方法比较了雄性栗鹀左右侧发声控制核团的体积差异.结果表明:雄性栗鹀前脑发声控制核团的体积有明显的侧别差异,即左侧高级发声中枢(high vocal center,HVC)、古纹状体粗核(nucleus robust archistriatum,RA)、嗅叶X区(Xarea)的体积均比右侧的体积大,分别是右侧同名核团体积的1.14,1.30和1.1倍;而与鸣唱运动无关的核团,如位于延髓的螺旋内核(nucleus spitiformis medialis,SpM)则无明显的侧别差异.说明鸣禽鸣唱运动的高级控制中枢在形态学上存在明显的侧别差异.  相似文献   

4.
用CB-HRP顺、逆行追踪的方法,研究了鸣禽栗巫鸟前脑高级发声中枢(HVC)及其周围架区(shelf)的传入、传出投射.结果表明,HVC接受丘脑葡萄形核(Uva)、新纹状体前部巨细胞核内侧部(mMAN)、新纹状体界面核(NIf)的传入投射,并发出纤维投射至旁嗅叶的X区和古纹状体粗核(RA);还通过架区间接联系听区复合体(L区)及脑桥的蓝斑核(Loc)等.  相似文献   

5.
鸣禽多巴胺(DA)神经元主要分布于中脑腹侧被盖区-黑质体致密部(VTA-SNc复合体)和中脑导水管周围灰质(PAG),并分别发出纤维投射至鸣唱控制核团前脑纹状X区、弓状皮质栎核(RA)和高级发声中枢(HVC).近年研究表明,中脑向鸣唱控制核团中释放的DA可以调控鸣唱控制核团中神经元的活动,进而调节鸣禽的鸣唱行为.该文对近年来,多巴胺对鸣禽发声相关神经元活动的调控研究做一综述.  相似文献   

6.
Kao MH  Doupe AJ  Brainard MS 《Nature》2005,433(7026):638-643
Cortical-basal ganglia circuits have a critical role in motor control and motor learning. In songbirds, the anterior forebrain pathway (AFP) is a basal ganglia-forebrain circuit required for song learning and adult vocal plasticity but not for production of learned song. Here, we investigate functional contributions of this circuit to the control of song, a complex, learned motor skill. We test the hypothesis that neural activity in the AFP of adult birds can direct moment-by-moment changes in the primary motor areas responsible for generating song. We show that song-triggered microstimulation in the output nucleus of the AFP induces acute and specific changes in learned parameters of song. Moreover, under both natural and experimental conditions, variability in the pattern of AFP activity is associated with variability in song structure. Finally, lesions of the output nucleus of the AFP prevent naturally occurring modulation of song variability. These findings demonstrate a previously unappreciated capacity of the AFP to direct real-time changes in song. More generally, they suggest that frontal cortical and basal ganglia areas may contribute to motor learning by biasing motor output towards desired targets or by introducing stochastic variability required for reinforcement learning.  相似文献   

7.
8.
What songbirds teach us about learning   总被引:8,自引:0,他引:8  
Brainard MS  Doupe AJ 《Nature》2002,417(6886):351-358
Bird fanciers have known for centuries that songbirds learn their songs. This learning has striking parallels to speech acquisition: like humans, birds must hear the sounds of adults during a sensitive period, and must hear their own voice while learning to vocalize. With the discovery and investigation of discrete brain structures required for singing, songbirds are now providing insights into neural mechanisms of learning. Aided by a wealth of behavioural observations and species diversity, studies in songbirds are addressing such basic issues in neuroscience as perceptual and sensorimotor learning, developmental regulation of plasticity, and the control and function of adult neurogenesis.  相似文献   

9.
Hahnloser RH  Kozhevnikov AA  Fee MS 《Nature》2002,419(6902):65-70
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the 'grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.  相似文献   

10.
Prather JF  Peters S  Nowicki S  Mooney R 《Nature》2008,451(7176):305-310
Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.  相似文献   

11.
蛤蚧发声通路核团定位的初步研究   总被引:2,自引:0,他引:2  
采用辣根过氧化物酶(HRP)方法和电刺激技术对爬行类动物蛤蚧发声通路的神经核团进行了定位研究。结果表明:在延脑部位,疑核和迷走神经运动核参与对蛤蚧发声活动的调节,但以疑核对发声活动的调节作用最为重要。疑核对蛤蚧发声器的支配为双侧性的,但以同侧为主。而迷走神经运动核只有单侧的标记。实验结果提示,中脑的中央灰质区(SGC)的背外侧核团可能通过对凝核的调节来影响蛤蚧的发声活动,大脑皮质的背侧皮质区(DX)也可能参与对发声活动的调节,且均为双侧性的调节作用。  相似文献   

12.
13.
It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.  相似文献   

14.
Female visual displays affect the development of male song in the cowbird   总被引:6,自引:0,他引:6  
M J West  A P King 《Nature》1988,334(6179):244-246
The role of social stimulation in avian vocal learning is well documented. The separate contribution of social, as opposed to vocal, stimulation has been difficult to address, however, because in almost all cases both tutor and pupil sing. The opportunity to isolate such effects arose in cowbirds (Molothrus ater ater) after discovering that males housed with non-singing female cowbirds made vocal changes which related directly to the female preferences for native song. Here we report how females communicate with males about songs. We describe a visual display by females, a wing stroke, that is elicited by specific vocalizations. The songs that trigger wing strokes are in turn highly effective releasers of copulatory postures, and thus this previously unnoticed female display has biological significance. The data not only provide the first evidence of the tutorial role of male-female interactions during song ontogeny, they also clearly implicate visual stimulation in song learning, a process that has until now been assumed to be affected only by auditory information.  相似文献   

15.
多巴胺是脑内关键的神经递质,它通过与多巴胺受体的作用及其下游的一系列反应来影响基因表达、神经调节和行为活动.在成年鸣禽中,中脑多巴胺能神经元投射到X区、HVC和RA等鸣唱相关核团,释放多巴胺的量受一定社会情境的影响,从而表现出directed song和undirected song等不同鸣唱行为.获得斑胸草雀脑中多巴胺受体的表达情况,为与社会情境有关的鸣唱行为及其他和多巴胺相关的行为活动的神经机制探究提供了基础,并可促进行为学、电生理等方面的研究.我们发现D1受体在斑胸草雀脑中的分布与其mRNA的分布基本一致:在脑的绝大部分区域都有分布;主要鸣唱核团HVC和RA有表达,与其周围区域差异不明显;LMAN中表达量较少;DLM中的表达量较高,并与其周围区域差异明显.但是纹状体内的表达与其周围区域的差异性没有mRNA明显;GCT中的表达量较多,与周围区域差异明显.  相似文献   

16.
对鸣禽燕雀前脑、中脑和延髓的四个发声控制核团进行了测量。结果发现:前脑HV_c,RA核团的体积存在着明显的性别差异,雄鸟核团均大于雌鸟。中脑IC_o核与延髓的IM核无明显性双态性。这表明,造成燕雀鸣啭能力的性别差异主要是由前脑高位中枢的性双态所决定的。  相似文献   

17.
Gentner TQ  Margoliash D 《Nature》2003,424(6949):669-674
The neural representations associated with learned auditory behaviours, such as recognizing individuals based on their vocalizations, are not well described. Higher vertebrates learn to recognize complex conspecific vocalizations that comprise sequences of easily identified, naturally occurring auditory objects, which should facilitate the analysis of higher auditory pathways. Here we describe the first example of neurons selective for learned conspecific vocalizations in adult animals--in starlings that have been trained operantly to recognize conspecific songs. The neuronal population is found in a non-primary forebrain auditory region, exhibits increased responses to the set of learned songs compared with novel songs, and shows differential responses to categories of learned songs based on recognition training contingencies. Within the population, many cells respond highly selectively to a subset of specific motifs (acoustic objects) present only in the learned songs. Such neuronal selectivity may contribute to song-recognition behaviour, which in starlings is sensitive to motif identity. In this system, both top-down and bottom-up processes may modify the tuning properties of neurons during recognition learning, giving rise to plastic representations of behaviourally meaningful auditory objects.  相似文献   

18.
Gridi-Papp M  Rand AS  Ryan MJ 《Nature》2006,441(7089):38
Animals' sound-producing organs often act as an integrated whole--particular vocal structure are not directly associated with the creation of discrete syllables. But here we show that the 'chuck' of the 'whine-chuck' mating call of the túngara frog, Physalaemus pustulosus, is caused by a fibrous mass attached to the vocal folds; the chuck is eliminated by removal of this structure, although the frog still tries to produce the sound. Sexual selection affects the acoustic complexity of the frog's call, so evolution may have shaped this unusual vocalization, which is akin to the two-voiced song of songbirds.  相似文献   

19.
应用免疫组化方法对鸣禽粟鹀(Emberiza rutila)鸣啭控制核团内GABA能神经元的分布进行了研究,在高级发声中枢(HVC,high vocal center),古纹状体粗核(RA,the robust nucleus of the archistrialum),X区(Arca X)3个前脑核团内有GABA样免疫反应出现.HVC和RA中GABA能神经元胞体大小存在性别和季节间的差异.结果提示GABA能神经元可能参与了鸣禽鸣啭的产生和鸣啭学习。  相似文献   

20.
Poole JH  Tyack PL  Stoeger-Horwath AS  Watwood S 《Nature》2005,434(7032):455-456
There are a few mammalian species that can modify their vocalizations in response to auditory experience--for example, some marine mammals use vocal imitation for reproductive advertisement, as birds sometimes do. Here we describe two examples of vocal imitation by African savannah elephants, Loxodonta africana, a terrestrial mammal that lives in a complex fission-fusion society. Our findings favour a role for vocal imitation that has already been proposed for primates, birds, bats and marine mammals: it is a useful form of acoustic communication that helps to maintain individual-specific bonds within changing social groupings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号