共查询到18条相似文献,搜索用时 109 毫秒
1.
无网格伽辽金法(EFGM)是近几年发展起来的与有限元相似的数值算法,并在电磁场分析中得到初步的应用.本文采用移动的最小二乘法构造形函数,从能量泛函的弱变分形式中得到控制方程,并用Lagrange乘子处理本质边界条件,从而得到数值解.基于MATLAB平台实现了一维静电场中的EFGM算法,并与解析解进行比较,结果表明了EFGM算法的正确性和有效性. 相似文献
2.
目的在不需要划分单元的情况下求解几何非线性问题。方法伽辽金最小二乘无网格法(MGLS)采用移动最小二乘近似函数作为试函数,并用罚函数法施加本质边界条件,内部区域用最小二乘域,边界区域用伽辽金域,是一种与单元划分无关的无网格方法。在求解几何非线性问题时,采用了增量和修正的Newton-Raphson迭代分析的方法,并在整个分析过程中所有变量的表达格式都采用更新的拉格朗日格式。结果通过对受均布载荷作用的悬臂梁用MGLS法进行内力分析,由于考虑大变形的影响,结构呈现出比线性分析结果刚硬的性质,结果与解析解符合的很好。结论算例表明:MGLS法在求解几何非线性问题时具有可行性,而且计算精度也较好。 相似文献
3.
针对有限元法等传统数值计算方法存在受单元网格限制、前后处理工作复杂的问题,提出应用一种数值计算方法--无网格伽辽金法,对具有简单边界条件的水利水电工程施工导流的恒定二维浅水流动问题进行了分析、计算.同时利用有限元法进行了对比计算,从流速、水位的计算结果来看,两种计算方法结果相近、误差较小,表明采用无网格伽辽金法解决此类问题是可行的. 相似文献
4.
无单元法是一种新的数值算法,它信息处理简单,其基本思想是在计算域上用一些离散的点由最小二乘法来拟合场函数,从而摆脱单元的限制.因为它应用了滑动最小二乘法,所以与有限元不同,它的近似场函数不一定精确通过计算点,这会使计算稍趋复杂,但与这种方法带来的方便性相比,这点缺陷是微不足道的,因此这种方法愈来愈引起人们的关注.将无单元法用于对称叠层板的屈曲问题,通过计算不同边界条件下各向同性板和对称叠层板的屈曲荷载参数,验证了该法的有效性,且精度较高,有着广泛的工程应用前景. 相似文献
5.
采用了一种基于t-分布的新型权函数,提高了无网格伽辽金法的计算精度;采用完全变换法处理本质边界条件,实现了本质边界条件在节点处的精确施加;针对裂纹扩展中的实际情况,对动态影响半径法作了进一步的补充和改进.算例验证了方法的正确性和有效性. 相似文献
6.
移动最小二乘近似具有计算稳定,全局相容,求解精度高的特性。采用最小势能原理推导了Winkler地基梁的无网格伽辽金离散系统方程,使用Lagerange乘子法对离散系统方程施加本质边界条件。算例表明:使用无网格伽辽金法处理弹性地基梁问题,具有精度高和易于实现的优点。 相似文献
7.
无网格伽辽金法(EFGM)是一种新型的求解偏微分方程的数值计算方法,不需对结构进行有限元网格的离散化,只需节点信息而不需将节点连成单元.本文论述和研究了EF-GM的基本原理与实现过程,主要包括用移动最小二乘法(MLS)构造形函数、用变分原理推导控制方程、用拉格朗日乘子法增强本征边界条件和域的高斯积分4个主要过程.基于MAT-LAB平台,实现了二维弹性结构的EFGM算法,并将典型算例的EFGM求解结果与有限元近似解、解析解结果进行了比较,结果表明了EFGM算法的正确性和有效性. 相似文献
8.
无单元伽辽金法新形函数技术 总被引:1,自引:0,他引:1
针对目前以移动最小二乘技术构造的无单元形函数需要大量的求逆运算,且在边界处无过点插值性质而给计算带来了困难的问题,以泰勒展开理论为基础,继承最小移动二乘法的高阶连续性,用Shepard插值实现"移动最小二乘法的由局部到整体区域的移动性"及"有限元法形函数过点插值性",旨在使无单元伽辽金法的形函数在满足高阶连续性的同时具有过点插值的性质,并避免了现有无单元伽辽金法形函数求解繁琐的缺点. 相似文献
9.
由于有限元法求解电容层析成像正问题的计算准备及后处理非常费时,对正问题的三维求解造成了瓶颈,为此,提出采用无网格伽辽金法求解电容层析成像正问题,获得正问题的弱变分形式,并用拉格朗日乘子法施加边界条件,从而得到数值解.在同样的仿真条件下,2种方法的计算时间分别为14.046S和5.078S.对5种典型流型进行仿真,结果表明,2种方法计算结果的最大相对误差为2.25%.因此,无网格伽辽金法与有限元法具有相当的精度,且计算速度有较大提高. 相似文献
10.
改进型无网格伽辽金法(IEFG)的研究及其应用 总被引:2,自引:0,他引:2
文章介绍了一种改进的移动最小二乘(IMLS)近似,该近似比现有的移动最小二乘(MLS)近似有更高的计算效率和精度,且不会导致系统方程产生病态.IMLS近似与无网格伽辽金法(EFG)相结合构成了一种改进型无网格伽辽金法(IEFG),该方法可以容易推广到求解非线性问题以及非均匀介质的力学问题.文章给出了2个计算实例,计算结果证明,该方法是一种收敛快、精度高、简便有效的通用方法,在工程中具有广阔的应用前景. 相似文献
11.
金属三维塑性成形过程无网格伽辽金法数值模拟技术 总被引:2,自引:0,他引:2
将无网格伽辽金法(EFGM)与三维刚(粘)塑性流动理论相结合,对EFGM在金属三维塑性成形过程数值模拟中的应用技术进行了研究.分别采用边界奇异权法和修正的罚函数法处理速度边界条件和体积不可压缩条件,采用反正切摩擦模型处理摩擦边界条件,推导了金属三维塑性成形过程EFGM法数值模拟的刚度方程,给出了关键算法.对长方体金属镦粗过程进行了数值模拟,并将数值结果与三维刚塑性有限元体积成形商品软件Deform3D计算结果作了比较.发现两者吻合良好,表明了本文方法的正确性和有效性. 相似文献
12.
针对最优化问题的增广Lagrange乘子罚函数方法给出了其收敛性结论。该方法提出的惩罚机制使得迭代点的可行性得到有效控制,通过添加Lagrange乘子有效避免了罚因子无限增大所带来的数值病态问题。全局收敛性结论表明了此方法的可行性。 相似文献
13.
针对基于滑动最小二乘法的板弯曲无单元法进行研究.通过弹性地基板的具体算例,探讨了不同节点的分布方案与指数型权函数影响域大小对板挠度和内力计算精度的影响,并给出了合理布置节点的方案.其对于板弯曲无单元法的进一步研究与应用,具有积极的意义. 相似文献
14.
无网格方法采用基于节点的近似,由移动最小二乘法拟合函数,从而摆脱了网格生成的困难,但本质边界条件的实施成为无网格方法中的难点之一。文中首先简要阐述了无网格方法,详细地介绍了无网格方法中各种本质边界条件处理的方法和研究进展,并分析比较了各自的优缺点。 相似文献
15.
将自然边界元方法与无网格方法结合起来,提出一种新的数值计算方法——自然边界元的无网格方法,该方法不仅具有自然边界元的降维、计算方便、稳定等优点,还具有无网格方法的只需节点信息、不必划分网格等优点,数值算例给出了令人满意的结果。 相似文献
16.
祁慧芳 《西南师范大学学报(自然科学版)》2018,43(5):11-16
将移动最小二乘近似和边界积分方程相结合,提出了求解三维Helmholtz方程内外边值问题的无网格边界点方法.该方法用单层位势理论将Helmholtz方程转化为间接边界积分方程,并用边界点法离散间接边界积分方程.由于边界积分方程中含有基本解的积分计算时会出现弱奇异,详细推导了弱奇异积分的计算方式.数值算例表明了间接边界点法求解三维Helmholtz方程的有效性. 相似文献
17.
考虑Helmholtz方程一类边值问题奇异解的数值方法。解在边界上的奇异性来源于区域边界的角点或者混合边值问题在边界上的临界点。对这两类问题,在奇异点附近引入人工边界,利用局部齐次边界条件导出该人工边界上的一个精确的DtN边界条件,进而在奇点外围的区域上求解此边值问题。对此问题,用间断有限元求解,该方法的优点是允许网格剖分出现悬点,比经典有限元更适合自适应计算。数值结果表明算法对求解近似区域上的问题是有效的。 相似文献
18.
本文将改进的移动最小二乘插值法和边界积分方程结合,提出了求解Signorini问题的一种新的边界类型无网格方法——插值型边界无单元法.该方法用投影算子处理Signorini问题中的非线性边界不等式条件,然后将Signorini问题归化为边界积分方程,并用改进的移动最小二乘插值法近似未知的边界变量,然后本文分析了该方法的收敛性.数值算例表明该方法在求解Signorini问题时的可行性和有效性,相对于边界元方法也具有更好的精度和收敛速度. 相似文献