首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C D Ferris  A M Cameron  R L Huganir  S H Snyder 《Nature》1992,356(6367):350-352
Release of intracellular Ca2+ by inositol 1,4,5-trisphosphate (InsP3) occurs through specific receptor proteins which are ligand-activated Ca2+ channels. Changes in intracellular Ca2+ regulate many cellular functions. This Ca2+ release is a discontinuous quantal process in which successive increments of InsP3 transiently release precise amounts of Ca2+ (refs 4-6). Possible explanations of quantal Ca2+ release have included rapid degradation of InsP3, reciprocity of Ca2+ release and sequestration, desensitization of InsP3 receptors, or actions of InsP3 on discrete compartments of Ca2+ with variable sensitivity to InsP3 (ref. 4). We successfully reconstituted InsP3-induced Ca2+ flux in vesicles containing only purified InsP3 receptor protein. The reconstituted vesicles retain the regulatory features of the InsP3 receptor, including phosphorylation sites and modulation of Ca2+ release by adenine nucleotides. Using these reconstituted vesicles, we show here that quantal flux of Ca2+ elicited by InsP3 is a fundamental property of its receptor.  相似文献   

2.
G A Mignery  T C Südhof  K Takei  P De Camilli 《Nature》1989,342(6246):192-195
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) serves as an intracellular second messenger for several neurotransmitters, hormones and growth factors by initiating calcium release from intracellular stores. A cerebellar Ins(1,4,5)P3 receptor has been characterized biochemically and shown by immunocytochemistry to be present in intracellular membranes in Purkinje cells. We show that a previously described Purkinje-cell messenger RNA encodes a protein of relative molecular mass 260,000 (260 K) with the same properties as the cerebellar Ins(1,4,5)P3 receptor. Its sequence is partially homologous to the skeletal muscle ryanodine receptor. By immunocytochemistry and electron microscopy the protein is shown to be present in all parts of the endoplasmic reticulum, including those that extend into axon terminals and dendritic spines. Our results indicate that gated calcium release from intracellular stores in muscle and Purkinje cells uses similar calcium-channel proteins localized in analogous intracellular compartments. This implies that the intracellular calcium stores in the endoplasmic reticulum of neurons extend into presynaptic terminals and dendritic spines where they may play a direct role in regulating the efficacy of neurotransmission.  相似文献   

3.
D J Storey  S B Shears  C J Kirk  R H Michell 《Nature》1984,312(5992):374-376
Many receptors for hormones, neurotransmitters and other signals cause hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and effect a rise in cytosolic Ca2+ concentration. The inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) liberated during PtdIns(4,5)P2 breakdown seems to serve as a second messenger that activates the release of Ca2+ from a nonmitochondrial intracellular compartment. As expected if it is an important intracellular messenger, Ins(1,4,5)P3 is relatively rapidly degraded, both within stimulated cells and when added to homogenates of blowfly salivary gland or to permeabilized, but not intact, hepatocytes. Here we report that the dephosphorylation reactions responsible for the conversion of Ins(1,4,5)P3 to free inositol in rat liver are catalysed by two or more enzymes, and that these reactions are distributed between the plasma membrane and cytosol. The Ins(1,4,5)P3 5-phosphatase and inositol 1-phosphate (Ins(1)P) phosphatase of liver appear similar to enzymes described previously in erythrocytes and brain.  相似文献   

4.
Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate   总被引:2,自引:0,他引:2  
A Fein  R Payne  D W Corson  M J Berridge  R F Irvine 《Nature》1984,311(5982):157-160
A central question concerning vision is the identity of the biochemical pathway that underlies phototransduction. The large size of the ventral photoreceptors of Limulus polyphemus renders them a favourite preparation for investigating this problem. The fact that a single photon opens approximately 1,000 ionic channels in these photoreceptors suggests the need for an internal transmitter. We have investigated whether inositol 1,4,5-trisphosphate (InsP3) functions as such an internal transmitter, given that InsP3 may act as an intracellular messenger in other cellular processes. Here we report that in Limulus, intracellular pressure injection of InsP3 both excites and adapts ventral photoreceptors in a manner similar to light.  相似文献   

5.
In a variety of cells, the Ca2+ signalling process is mediated by the endoplasmic-reticulum-membrane-associated Ca2+ release channel, inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R). Being ubiquitous and present in organisms ranging from humans to Caenorhabditis elegans, InsP3R has a vital role in the control of cellular and physiological processes as diverse as cell division, cell proliferation, apoptosis, fertilization, development, behaviour, memory and learning. Mouse type I InsP3R (InsP3R1), found in high abundance in cerebellar Purkinje cells, is a polypeptide with three major functionally distinct regions: the amino-terminal InsP3-binding region, the central modulatory region and the carboxy-terminal channel region. Here we present a 2.2-A crystal structure of the InsP3-binding core of mouse InsP3R1 in complex with InsP3. The asymmetric, boomerang-like structure consists of an N-terminal beta-trefoil domain and a C-terminal alpha-helical domain containing an 'armadillo repeat'-like fold. The cleft formed by the two domains exposes a cluster of arginine and lysine residues that coordinate the three phosphoryl groups of InsP3. Putative Ca2+-binding sites are identified in two separate locations within the InsP3-binding core.  相似文献   

6.
M Kuno  P Gardner 《Nature》1987,326(6110):301-304
Hydrolysis of membrane-associated phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)-P2) to water soluble inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is a common response by many different kinds of cells to a wide variety of external stimuli (see refs 1 and 2 for review). Ins (1,4,5)P3 is a putative second messenger which increases intracellular Ca2+ by mobilizing internal Ca2+ stores, a hypothesis which has been substantiated by studies with chemically permeabilized cells and with isolated microsomal membrane fractions. But the possibility that Ins(1,4,5)P3 could induce in intact cells an influx of external Ca2+ through transmembrane channels, originally hypothesized by Michell in 1975, has never been directly tested. We report here single-channel recordings of an Ins(1,4,5)P3-activated conductance in excised patches of T-lymphocyte plasma membrane. The Ins(1,4,5)P3-activated transmembrane channel appears to be identical to the recently described mitogen-regulated, voltage-insensitive Ca2+ permeable channel involved in T-cell activation. We suggest that Ins(1,4,5)P3 acts as the second messenger mediating transmembrane Ca2+ influx through specific Ca2+-permeable channels in mitogen-stimulated T-cell activation.  相似文献   

7.
Wang Y  Li G  Goode J  Paz JC  Ouyang K  Screaton R  Fischer WH  Chen J  Tabas I  Montminy M 《Nature》2012,485(7396):128-132
In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs), which associate with CRTC2. After their activation, InsP(3)Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP(3)Rs. InsP(3)R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP(3)Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP(3)R modulate hepatic glucose production under fasting conditions and in diabetes.  相似文献   

8.
Inositol 1,4,5-trisphosphate (InsP3) mediates the effects of several neurotransmitters, hormones and growth factors by mobilizing Ca2+ from a vesicular, non-mitochondrial intracellular store. Many studies have indirectly suggested the endoplasmic reticulum (ER) to be the site of InsP3 action, though some have implicated the plasma membrane or a newly described smooth surfaced structure, termed the calciosome. Using antibodies directed against a purified InsP3-receptor glycoprotein, of relative molecular mass 260,000, in electron microscope immunocytochemical studies of rat cerebellar Purkinje cells, we have now localized the InsP3 receptor to ER, including portions of the rough endoplasmic reticulum, a population of smooth-membrane-bound organelles (smooth ER), a portion of subplasmalemmal cisternae and the nuclear membrane, but not to mitochondria or the cell membrane. These results suggest that in cerebellar Purkinje cells, InsP3-induced intracellular calcium release is not the property of a single organelle, but is effected by specialized portions of both rough and smooth ER, and possibly by other smooth surfaced structures. The present findings are the first immunocytochemical demonstration of an InsP3 receptor within a cell.  相似文献   

9.
P Volpe  G Salviati  F Di Virgilio  T Pozzan 《Nature》1985,316(6026):347-349
The sarcoplasmic reticulum of skeletal muscle is a specialized form of endoplasmic reticulum that controls myoplasmic calcium concentration and, therefore, the contraction-relaxation cycle. Ultrastructural studies have shown that the sarcoplasmic reticulum is a continuous but heterogeneous membranous network composed of longitudinal tubules that surround myofibrils and terminal cisternae. These cisternae are junctionally associated, via bridging structures called 'feet', with sarcolemmal invaginations (the transverse tubules) to form the triadic junction. Following transverse tubule depolarization, a signal, transmitted along the triadic junction, triggers Ca2+ release from terminal cisternae, but the mechanism of this coupling is still unknown. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) has recently been shown to mobilize Ca2+ from intracellular stores, referable to endoplasmic reticulum, in a variety of cell types (see ref. 8 for review), including smooth muscle cells of the porcine coronary artery and canine cardiac muscle cells. Here we show that Ins(1,4,5)P3 releases Ca2+ from isolated, purified sarcoplasmic reticulum fractions of rabbit fast-twitch skeletal muscle, the effect being more pronounced on a fraction of terminal cisternae that contains morphologically intact feet structures; and elicits isometric force development in chemically skinned muscle fibres.  相似文献   

10.
T K Ghosh  J M Mullaney  F I Tarazi  D L Gill 《Nature》1989,340(6230):236-239
Inositol 1,4,5-trisphosphate (InsP3) is an established mediator of intracellular Ca2+ signals but little is known of the nature and organization of Ca2+ regulatory organelles responsive to InsP3. Here we derive new information from the study of Ca2+ movements induced both by InsP3 and a specific GTP-activated Ca2+ translocation process. The latter mechanism is clearly distinct from that activated by InsP3 and may involve the translocation of Ca2+ between compartments without its release into the cytosol. This idea is supported by the fact that GTP activates Ca2+ movement into the InsP3-releasable pool. In the light of this evidence we postulated that there are two intracellular Ca2+ pools distinguishable by InsP3-sensitivity and oxalate-permeability, and that movement between them is activated by GTP. We report here direct evidence for the existence and separation of two distinct Ca2+-pumping compartments with properties coinciding with those predicted. Of these, the InsP3-sensitive Ca2+ pool is identified within a purified rough endoplasmic reticulum fraction, an observation consistent with recent InsP3 receptor-localization studies. Ca2+ translocation between pools may reflect function of a class of small GTP-binding proteins known to mediate interorganelle transfer in eukaryotic cells.  相似文献   

11.
Inositol 1,4,5-trisphosphate (InsP3) can stimulate skinned smooth and skeletal muscle to contract by initiating Ca2+ release from the sarcoplasmic reticulum. Whether this process is an integral component of the in vivo muscle activation mechanism was tested by releasing InsP3 rapidly within skinned muscle fibers of rabbit main pulmonary artery and frog semitendinosus. InsP3 was liberated on laser pulse photolysis of a photolabile but biologically inactive precursor of InsP3 termed caged InsP3. Caged InsP3 is a mixture of compounds in which InsP3 is esterified with 1(2-nitrophenyl)diazoethane (probably at the P4- or P5-position). Photochemical release of InsP3 induced a full contraction in both muscles at physiological free Mg2+ concentrations, but only in the smooth muscle were the InsP3 concentration (0.5 microM) and the activation rate compatible with the in vivo physiological response. Endogenous InsP3-specific phosphatase activity was present in smooth muscle and had about 35-fold greater activity than that in the skeletal-muscle preparation. Caged InsP3 was not susceptible to phosphatases in either preparation.  相似文献   

12.
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes   总被引:3,自引:0,他引:3  
Y Oron  N Dascal  E Nadler  M Lupu 《Nature》1985,313(5998):141-143
The enhanced metabolism of phosphoinositides, which is associated with a wide variety of stimuli and physiological responses, has been studied intensively. Berridge and his collaborators demonstrated that the first measurable reaction following cell membrane receptor activation is a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and that the product of this reaction, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), could cause a release of non-mitochondrial calcium. These findings have been verified in other systems. Although the relationship between the hydrolysis of PtdIns(4,5)P2 and the mobilization of intracellular calcium was clearly demonstrated, the direct link between Ins(1,4,5)P3 production and the physiological response was only implied. We have investigated the possibility that the intracellular release of Ins(1,4,5)P3 mediates the muscarinic-cholinergic response is Xenopus oocytes, and we show here that intracellularly injected Ins(1,4,5)P3 mimics the muscarinic depolarizing chloride current in Xenopus oocytes. This is the first demonstration of a direct link between phosphoinositides metabolism and a neuro-transmitter-induced physiological response.  相似文献   

13.
M R Blatt  G Thiel  D R Trentham 《Nature》1990,346(6286):766-769
RECENT investigations suggest that cytoplasmic D-myo-inositol 1,4,5-trisphosphate (InsP3) functions as a second messenger in plants, as in animals, coupling environmental and other stimuli to intracellular Ca2+ release. Cytoplasmic levels of InsP3 and the turnover of several probable precursors in plants are affected by physiological stimuli--including light, osmotic stress and the phytohormone indoleacetic acid--and InsP3 activates Ca2+ channels and Ca2+ flux across plant vacuolar and microsomal membranes. Complementary data also link changes in cytoplasmic free Ca2+ to several physiological responses, notably in guard cells which regulate gas exchange through the stomatal pores of higher plant leaves. Recent evidence indicates that guard cell K+ channels and, hence, K+ flux for stomatal movements may be controlled by cytoplasmic Ca2+. So far, however, direct evidence of a role for InsP3 in signalling in plants has remained elusive. Here we report that InsP3 released from an inactive, photolabile precursor, the P5-1-(2-nitrophenyl)ethyl ester of InsP3 (caged InsP3) reversibly inactivates K+ channels thought to mediate K+ uptake by guard cells from Vicia faba L. while simultaneously activating an apparently time-independent, inward current to depolarize the membrane potential and promote K+ efflux through a second class of K+ channels. The data are consistent with a transient rise in cytoplasmic free Ca2+ and demonstrate that intact guard cells are competent to use InsP3 in signal cascades controlling ion flux through K+ channels.  相似文献   

14.
L Missiaen  H De Smedt  G Droogmans  R Casteels 《Nature》1992,357(6379):599-602
Low concentrations of inositol 1,4,5-trisphosphate (InsP3) evoke a very rapid mobilization of intracellular Ca2+ stores in many cell types, which can be followed by a further, much slower efflux. Two explanations have been suggested for this biphasic release. The first proposes that the Ca2+ stores vary in their sensitivity to InsP3, and each store releases either its entire contents or nothing (all-or-none release); the second proposes instead that the stores are uniformly sensitive to the effects of InsP3, but that they can release only a fraction of their Ca2+ before their sensitivity is somehow attenuated (steady-state release). Experiments using purified InsP3 receptor molecules reconstituted into lipid vesicles have shown heterogeneity of the receptors in their response to InsP3 under conditions in which the total Ca2+ level at both sides of the receptor is held constant. We now report that in permeabilized A7r5 smooth-muscle cells incubated in Ca(2+)-free medium, the amount of 45Ca2+ remaining in the stores after the rapid transient phase of release is independent of their initial Ca2+ levels, indicating that partially depleted stores are less sensitive to InsP3. Moreover, if the stores are reloaded with 40Ca2+ after the first stimulus, reapplication of the same low concentration of InsP3 will release further 45Ca2+. This recovery of InsP3 sensitivity is almost complete. Under these conditions, Ca2+ release must thus occur by a steady-state mechanism, in which the decreasing Ca2+ content of the stores slows down further release.  相似文献   

15.
W Hanke  H Breer 《Nature》1986,321(6066):171-174
A pentameric membrane protein composed of four types of polypeptide has been identified as the minimal structural unit responsible for the electrogenic action of acetylcholine on electrocytes and muscle cells. Because many populations of central and peripheral neurons also have nicotinic acetylcholine receptors (AChRs), considerable effort has recently gone into identifying the neuronal receptor. The central nervous tissue of insects contains very high concentrations of nicotinic AChRs, and we have recently purified an alpha-toxin binding protein, a putative AChR, from neuronal membranes of locusts. It is a component of high relative molecular mass, clearly composed of identical subunits, a structure predicted for an ancestral AChR protein. To verify that the purified polypeptides not only represent ligand binding sites but that they are indeed functional receptors, we have now reconstituted the isolated protein in a planar lipid bilayer. We show that in this system cholinergic agonists activate functional ion channels, that have properties comparable to those exhibited by the peripheral AChRs in vertebrates; thus, for the first time a functional acetylcholine receptor channel has been identified in nerve cells.  相似文献   

16.
Much recent interest in the mechanism of dehydration of the dense subpopulation of sickle-cell anaemia (SS) red cells, including the 'irreversibly sickled cells' (ISCs), stems from the view that these relatively rigid cells have a major role in the two main clinical features of the disease, namely haemolytic anaemia and microvascular occlusion. The discovery that SS red cells have an elevated calcium content and accumulate Ca2+ during deoxygenation-induced sickling suggested a working hypothesis of wide appeal for the mechanism of cell dehydration: retained calcium would activate the red cell Ca2+-sensitive K+ channels, causing progressive net loss of KCl and water. However, retained calcium, which seemed as weakly bound to cytoplasmic buffers as in normal red cells, failed to show any measurable activation of K+ channels or Ca2+ pumps in metabolically normal SS cells, despite the apparent functional normality or near-normality of these transport systems. We now offer a possible explanation for this failure. We show that, contrary to the traditional views, SS cells, and to a lesser extent normal human red cells, possess intracellular vesicles with ATP-dependent Ca2+-accumulating capacity, and that nearly all the measurable calcium of fresh SS cells is contained within such vesicles, probably in the form of precipitates with inorganic or organic phosphates.  相似文献   

17.
JR James  RD Vale 《Nature》2012,487(7405):64-69
A T-cell-mediated immune response is initiated by the T-cell receptor (TCR) interacting with peptide-bound major histocompatibility complex (pMHC) on an infected cell. The mechanism by which this interaction triggers intracellular phosphorylation of the TCR, which lacks a kinase domain, remains poorly understood. Here, we have introduced the TCR and associated signalling molecules into a non-immune cell and reconstituted ligand-specific signalling when these cells are conjugated with antigen-presenting cells. We show that signalling requires the differential segregation of a phosphatase and kinase in the plasma membrane. An artificial, chemically controlled receptor system generates the same effect as TCR–pMHC, demonstrating that the binding energy of an extracellular protein–protein interaction can drive the spatial segregation of membrane proteins without a transmembrane conformational change. This general mechanism may extend to other receptors that rely on extrinsic kinases, including, as we demonstrate, chimaeric antigen receptors being developed for cancer immunotherapy.  相似文献   

18.
主要运用中心流形定理和分岔理论讨论了 IP3-Ca2+振荡模型的非线性动态,从理论上严格证明了系统不仅存在Saddle-node分岔和 Hopf分岔,而且揭示了系统振荡现象的产生和消失分别是由于平衡点发生Supercritical Hopf分岔和Subcritical Hopf分岔所导致的。通过运用matlab软件进行数值模拟,验证了理论分析结果的正确性。  相似文献   

19.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

20.
Rose CR  Blum R  Pichler B  Lepier A  Kafitz KW  Konnerth A 《Nature》2003,426(6962):74-78
The neurotrophin receptor TrkB is essential for normal function of the mammalian brain. It is expressed in three splice variants. Full-length receptors (TrkB(FL)) possess an intracellular tyrosine kinase domain and are considered as those TrkB receptors that mediate the crucial effects of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5). By contrast, truncated receptors (TrkB-T1 and TrkB-T2) lack tyrosine kinase activity and have not been reported to elicit rapid intracellular signalling. Here we show that astrocytes predominately express TrkB-T1 and respond to brief application of BDNF by releasing calcium from intracellular stores. The calcium transients are insensitive to the tyrosine kinase blocker K-252a and persist in mutant mice lacking TrkB(FL). By contrast, neurons produce rapid BDNF-evoked signals through TrkB(FL) and the Na(v)1.9 channel. Expression of antisense TrkB messenger RNA strongly reduces BDNF-evoked calcium signals in glia. Thus, our results show that, unexpectedly, TrkB-T1 has a direct signalling role in mediating inositol-1,4,5-trisphosphate-dependent calcium release; in addition, they identify a previously unknown mechanism of neurotrophin action in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号