首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
超声波流量计在测量液体流量时,往往要求管内是充满状态,但在实际应用中,常常出现液体中含有气体,从而造成测量偏差。为了能够修正该偏差,提出了多传感器组合使用,进行修正的方法。对管道中充满液体时,使用FDT—21超声波手持流量计进行流量标定;在含有气体状态下,使用38 k Hz的超声波发射及接收装置,测量不同含气量研究不同安装方式对于含气流量的测量影响,从而实现含气状态下水平管道中流量的修正。结果表明:水平管道液体流动时,含气会对超声波流量计测量结果造成误差,通过适当的修正方法可实现超声波流量计流量的测量,偏差大约在2%左右。  相似文献   

2.
基于函数链神经网络的管道煤气流量计量系统   总被引:5,自引:1,他引:5  
在管道煤气计量系统测量中引入管道煤气相对湿度修正,并采用湿度传感器转换相对湿度信号,利用函数链神经网络对管道煤气工况温度下所对应的水蒸汽饱和压力进行拟合,得到基于函数链神经网络的管道煤气流量计量模型和在线计量系统,从而大大简化管道煤气流量计量软件,在流量计设计范围内实现管道煤气流量实时在线计量.实际应用结果表明,该计量系统测量管道煤气流量误差小于0.7%.  相似文献   

3.
马彪 《科技资讯》2014,(29):62-62
超声波流量计的应用领域日益扩大,已经成为生活中的重要部分。其安装维护方便快捷,同时还具有较长的生命周期。超声波流量计对于难测介质和大口径管道的流量计量非常的适用,具有较高的方便性和可靠性。造成测量误差的因素包括安装误差、流量范围、管径误差、压力变送器、探头污物等。虽然超声波流量计目前还有不足之处,但是科技的进步赋予了超声波流量计以综合性优势的更为广阔的发展空间。该文主要分析超声波流量计的特点和整个测量过程中产生误差的因素。  相似文献   

4.
流量计测量需在一个相对稳定的环境,而实际测量中管路产生的流量波动对流量计的测量结果产生影响.为了研究不同流量波动对管路测量结果的影响,设计了一台叶片式流量波动发生器,通过电机带动蝶阀阀门来回摆动,在管路中形成一个流量波动.该发生器通过改变电机的摆动频率和摆动角度产生不同的流量波动来模仿水流量系统中可能产生的流量波动.实验证明,该波动发生器所产生的流量波动能够沿着管路上下游进行传播,且在改变发生器摆动频率与摆角时所产生的流量波动也会随之改变.  相似文献   

5.
研究了梅钢石灰窑供气系统不能准确检测煤气流量等实际问题和超声波流量计的计量特点,提出了一种基于WZ-2188超声波流量计和孔板流量计双重检测技术,实现煤气流量精确检测和煤气流量在线补偿的新方法。经过采用煤气流量双重检测和在线补偿技术对石灰窑供气系统的改造,减小了煤气流量检测的误差,提高了活性石灰的质量,为企业带来了较大的经济效益和社会效益。  相似文献   

6.
采用计算流体力学(CFD)方法,建立90°单弯管道内气体流动的仿真模型,获得管道内流场分布情况,通过对声路上每个网格内声波传播时间逐个累计的方式模拟超声波流量计原理计算渡越时间。搭建超声波气体流量计量实验系统,通过实验验证仿真结果。研究结果表明:在90°单弯管道下游,随直管段距离增加,多声道超声波气体流量计的计量偏差逐渐减小。以90°单弯管下游10D位置安装的六声道超声波流量计为例,声平面角度变化使计量相对误差发生变化。相对于与弯管平面平行或者垂直安装的方式,与弯管平面倾斜安装能有效避开流速分布的低速区,降低计量误差。在实际应用中,当管道内流场分布非对称时,多声道流量计声平面安装角度的变化会影响流量计量效果。在阻流件下游安装多声道超声波流量计,需根据流场分布特点选择适当的声平面安装角度,降低非对称流速分布对精度带来的影响。  相似文献   

7.
秋冬季凡纳滨对虾养殖池塘细菌的数量动态   总被引:2,自引:0,他引:2  
2007年9月~2008年2月,研究了珠海市斗门区凡纳滨对虾4个低盐度池塘水体、沉积物中异养细菌、弧菌、芽孢杆菌数量动态,结果表明,水体中异养细菌、弧菌、芽孢杆菌在养殖前期不稳定,中后期趋于稳定,数量波动范围分别为1.8×103~1.2×105/mL、1.4×102~4.0×103/mL、1.6×102~1.7×103/mL,水体中异养细菌数量平均为1.95×104/mL;沉积物中异养细菌较稳定,弧菌呈先升后降趋势,芽孢杆菌呈上升趋势,三者的数量均高出水体2~3个数量级,数量波动范围分别为1.0×106~2.2×107/g、7.0×103~4.7×105/g、4.7×106~2.4×106/g,异养细菌数量平均为9.16×106/g  相似文献   

8.
氢气是实现降低温室气体排放的潜在能源载体。氢气输送是阻碍氢能大规模应用的薄弱环节。而掺氢天然气管路是实现氢气大规模、长距离、低成本输送的高效途径。但氢气掺入天然气会导致流速,压力等参数发生变化,影响超声波流量计的性能。因此,研究氢气和天然气的掺混过程及超声波流量计的适应性是很有必要的。本文构建T型管、单螺旋管、单螺旋+前收缩管掺混管路的三维模型,使用CFD方法分析管路结构和掺氢比对流场氢气浓度和混合气体速度分布规律的影响。通过比较,5%掺氢体积比时C型掺混管路为最佳模型,掺混均匀时的氢气摩尔分数约为4.92%;并分析超声波流量计的适应性,进而推荐具体安装位置。此研究内容为超声波流量计在掺氢天然气精确计量方面提供了参考。  相似文献   

9.
论述了螺旋槽管管内外单相流体传热研究的试验结果,并将试验数据按流动参数、物性参数和几何参数采用无量纲准则数进行整理.给出了在雷诺数Rei=104~105范围内管内无量纲换热系数Nui的关联式,和在Re.=3×103~6×104及Re.=3.3×103~105范围内气流横掠螺旋槽管错列和顺列管束的管外无量纲换热系数Nu.的关联式,该关联式可以作为螺旋槽管换热器的设计依据.介绍了螺旋槽管作为空气预热器在电站煤粉锅炉中的广泛应用,给出了几个应用螺旋槽管空气预热器解决锅炉具体问题的实例,表明了螺旋槽管空气预热器的显著优越性.  相似文献   

10.
为保证高温气冷堆发电系统的安全运行,弯管流量计被设计在系统一回路中对氦气循环流量进行测量。在循环流动过程中,氦气会分流到镜像对称分布的14根上升管路,再汇总流入汇流箱中,通过压气机返回反应堆。根据系统设计要求测量4根上升管路上的支路流量进而实现对于全部14根上升管路总流量的高精度测量。为保证上升管路支路流量测量与全部14根上升管总流量的准确对应关系,通过实验和数值模拟相结合的方式研究了一回路14根上升管的流量分布规律。实验系统是根据流动相似准则,针对14根上升管结构设计并建立了一套与真实系统几何相似的1:5尺寸实验模型。并在每根上升管路上安装高精度弯管流量计对分支流量进行测量。根据统计实验分析得到,合计14根弯管流量计测量的总流量与流量真值能够在1%的精度水平上一致。数值模拟分析上升管各支路的流量分布特性表明:在严格控制装置各个环节的对应关系时,上升管各支路流量与流量平均值分布在±1%精度范围,因此通过选择4根支路作为弯管流量计的测量支路实现测量全部14根上升管流量的设计是可行的。  相似文献   

11.
多声道超声气体流量计的建模与仿真   总被引:4,自引:0,他引:4  
基于时差式超声流量计测量原理和Gauss-Legendre数值积分方法,建立了多声道超声气体流量计的数学模型.在建模过程中,根据瞬时流速以流速分布函数按面积积分的公式,推导出在弦向声道处的平均流速按声线积分的表达式,然后推导出在弦向声道处的平均流速加权求和的瞬时流速公式;应用Legendre多项式求解出高斯节点值和加权系数,即确定了各个声道的分布位置.以四声道交叉布置方式的超声气体流量计为例,通过Matlab仿真与误差分析,结果表明:在考虑流速分布的影响下,模型的测量误差不大于0.1%,验证了模型的正确性,因而多声道超声气体流量计完全能满足油气、天然气等气体在输送和分配计量中的精度要求.  相似文献   

12.
侵入式探头对超声流量计流场产生扰动.探头扰动造成测量误差,制约非实流标定的发展.针对探头扰动提出简化模型,根据简化模型给出探头扰动误差估算方法.与DN500和DN100两种口径的多声路超声流量计实流实验结果进行对比,估算结果与实验结果相差最大不超过0.4%.实验结果表明,随超声流量计直径减小,探头扰动造成的测量负误差迅速增大.DN100多声路超声流量计中探头扰动造成的测量误差达到-5%,且误差随雷诺数的变化率比DN500多声路超声流量计大.  相似文献   

13.
超声多普勒流量计实现分区流速测量的方法研究   总被引:1,自引:1,他引:0  
为了扩展超声波多普勒测量方法的功能并提高超声多普勒流量计的测量精度,提出了可以实现流通区域内流体速度分布测量的分区流速测量方法。采用超声波交叉域法,对声束的发射与接收进行汇聚,使汉速信息集中在流场中十几毫米到数毫米的区域范围内;采用了发射、接收换能器,让声束的交叉域分布在描述流场特性的地方,实现了流场的分区流速测量。扩展了超声波多普勒方法的功能,若对分区流速进行积分处理就可获得流量,为提高超声多普  相似文献   

14.
超声波流量计测流精度的实验研究   总被引:2,自引:0,他引:2  
为了检验超声波流量计的测流精度,特将国产的LCJ型与美国ORE公司的7500型两种超声波流量计进行对比实验。为此,建立了管道测流实验平台,在管道出口3.1 m处交叉安装了两对超声波传感器,进行了不同流量重复对比实验,并应用小波分析对实验数据进行分析比较。实验结果表明,国产LCJ型超声波流量计较美国ORE公司的7500型超声波流量计有更高的分辨率和测流精度,且操作简单。  相似文献   

15.
本文应用流体力学边界层理论,对涡轮流量计涡轮叶片受到的流体粘性阻力矩作了较详尽的理论分析,得到了粘性阻力矩的计算公式。公式表明,在层流流动时,粘性阻力矩与流量的3/2次方成正比;在湍流流动时与流量成13/7次方关系。从而导出了全新的涡轮流量计的数学模型。根据这一数学模型计算的涡轮流量计的特性曲线与实验结果甚为吻合。文中还提出了关于涡轮流量计临界雷诺数Re_(c1)的新概念。认为可以用Re_(c1)的值作为判别涡轮流量计特性曲线优劣的准则数,对仪表结构参数进行优化设计,以扩大仪表的量程比。  相似文献   

16.
介绍了一种新型的节流式差压流量计——纺锤体流量计,推导了差压式流量计的一般理论以及用于纺锤体流量计的具体形式,并对纺锤体流量计的流动特性进行了数值模拟.结果表明,在来流规则和畸变情况下,纺锤体等直径段部分均能很好地形成环形槽道流动,使测量重复性和精确度得到大幅提高成为可能;同时,由于完全避免了流动分离,与孔板流量计相比,压力损失与所得差压之比小得多,在高雷诺数下尤为明显.实验结果验证了数值模拟的可靠性.  相似文献   

17.
The compressible flow past a tabbed cylinder has been studied numerically using large-eddy simulation for a free-stream Mach number M∞=0.75 and a Reynolds number based on the diameter Re=2×105. Because of the passive control of the flow past a tabbed cylinder, the mean drag coefficient of tabbed cylinder is less than that of a corresponding circular cylinder with a drag reduction up to 33%. The fluctuating lift coefficient is greatly suppressed to be nearly zero. Drag reduction due to the shearing process prevails over that due to the compressing process in this flow. Through investigating the mechanisms relevant to passive control of the tab, it is found that suppression of the shear layer instability can lead to a higher-base-pressure distribution, which can reasonably be associated with drag reduction and suppression of the lift fluctuations. The analysis of convective Mach number and self-sustained oscillations phenomenon inside the shear layers indicates that both the compressible effect and high-frequency forcing result in suppression of the shear layer instability of tabbed cylinder.  相似文献   

18.
上游单90°弯头对内锥流量计性能的影响   总被引:1,自引:0,他引:1  
为提高对内锥流量计安装与使用条件的认识,设计100mm口径的样机一台,开展了上游单个90。弯头影响的实验研究.实验介质为常温水,雷诺数范围为0.13×10^5~5.1×10^5.实验方案分基线实验和上游不同直管段长度的单弯头实验,节流比分别为0.45、0.55、0.65和0.85,累计进行了15组实验.利用平均流出系数相对误差及附加不确定度作为安装条件的主要评价标准,给出了上游单个90°弯头实验的直管段建议长度,并与国外研究结论进行了比较。得出节流比分别为0.45、0.55和0.65时,前直管段建议长度分别为2D、1D和3D;节流比为0.85时,前直管段长度为0D、1D、2D和5D时,弯头的影响均不能忽略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号