首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Whitman  C P Downes  M Keeler  T Keller  L Cantley 《Nature》1988,332(6165):644-646
The generation of second messengers from the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2) by phosphoinositidase C has been implicated in the mediation of cellular responses to a variety of growth factors and oncogene products. The first step in the production of PtdInsP2 from phosphatidylinositol (PtdIns) is catalysed by PtdIns kinase. A PtdIns kinase activity has been found to associate specifically with several oncogene products, as well as with the platelet-derived growth factor (PDGF) receptor. We have previously identified two biochemically distinct PtdIns kinases in fibroblasts, and have found that only one of these, designated type I, specifically associates with activated tyrosine kinases. We have now characterized the site on the inositol ring phosphorylated by type I PtdIns kinase, and find that this kinase specifically phosphorylates the D-3 ring position to generate a novel phospholipid, phosphatidylinositol-3-phosphate (PtdIns(3)P). In contrast, the main PtdIns kinase in fibroblasts, designated type II, specifically phosphorylates the D-4 position to produce phosphatidylinositol-4-phosphate (PtdIns(4)P), previously considered to be the only form of PtdInsP. We have also tentatively identified PtdIns(3)P as a minor component of total PtdInsP in intact fibroblasts. We propose that type I PtdIns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.  相似文献   

2.
An inositol tetrakisphosphate-containing phospholipid in activated neutrophils   总被引:15,自引:0,他引:15  
Inositol (1,4,5)triphosphate (InsP3) and tetrakisphosphate (InsP4) have been observed in a variety of cell types and have been proposed to play roles in the receptor-mediated rise in intracellular Ca2+ (refs 2, 3). Recently, they have been shown to act synergistically in the activation of a Ca2+-dependent K+ channel in lacrimal acinar cells. InsP3 is the product of phospholipase C (PLC) action on phosphatidylinositol 4,5-bisphosphate (PtdInsP2) whereas InsP4 is believed to arise from phosphorylation of InsP3 by a cytosolic kinase. Although sought as a source for InsP4, PtdInsP3 has not been identified in any specific cell type. There were early reports of InsP4-containing phospholipids in crude extract from bovine brain, but this finding was later withdrawn. Recently, however, a membrane-bound enzyme (Type 1 PI kinase) which adds phosphate onto the 3 position of inositol phospholipids has been identified and the phosphatidylinositol-3-phosphate (PtdIns(3)P) product characterized. This suggests that several forms of phosphoinositides may exist and could be precursors for some of the variety of soluble inositol phosphate products which have been reported in recent years. Here we report the appearance of another novel phosphoinositide containing four phosphates, phosphatidylinositol trisphosphate (PtdInsP3) which we find only in activated but not in unstimulated neutrophils from human donors.  相似文献   

3.
P T Hawkins  T R Jackson  L R Stephens 《Nature》1992,358(6382):157-159
Although the hormone-stimulated synthesis of 3-phosphorylated inositol lipids is known to form an intracellular signalling system, there is no consensus on the crucial receptor-regulated event in this pathway and it is still not clear which of the intermediates represent potential output signals. We show here that the key step in the synthesis of 3-phosphorylated inositol lipids in 3T3 cells stimulated by platelet-derived growth factor is the activation of a phosphatidylinositol(4,5)-bisphosphate (3)-hydroxy (PtdIns(4,5)P2 3-OH) kinase. A similar conclusion has been applied to explain the actions of formyl-Met-Leu-Phe on neutrophils, and it may be that receptors that couple through intrinsic tyrosine kinases or through G proteins stimulate the same step in 3-phosphorylated inositol lipid metabolism. The close parallel between these two mechanisms for the activation of PtdIns(4,5)P2 3-OH kinase and those described for the activation of another key signalling enzyme, phospholipase C (ref. 7), focuses attention on the product of the PtdIns(4,5)P2 3-OH kinase, PtdIns(3,4,5)P3, as a possible new second messenger.  相似文献   

4.
H Higashida  D A Brown 《Nature》1986,323(6086):333-335
Hydrolysis of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) produces two prospective intracellular messengers: inositol 1,4,5-trisphosphate (InsP3), which releases Ca2+ from intracellular stores; and diacylglycerol (DG), which activates protein kinase C. Here we show how the formation of these two substances triggered by one external messenger, bradykinin, leads to the appearance of two different sequential membrane conductance changes in the neurone-like NG108-15 neuroblastoma-glioma hybrid cell line. In these cells bradykinin rapidly hydrolyses PtdIns(4,5)P2 to InsP3 and DG, raises intracellular Ca2+ and hyperpolarizes then depolarizes the cell membrane. By voltage-clamp recording we show that the hyperpolarization results from the activation pharmacologically-identifiable species of Ca2+-dependent K+ current. This is also activated by intracellular injections of Ca2+ or InsP3 so may be attributed to the formation and action of InsP3. The subsequent depolarization results primarily from the inhibition of a different, voltage-dependent K+ current, the M-current that is also inhibited by DG activators. Hence we describe for the first time a dual, time-dependent role for these two intracellular messengers in the control of neuronal signalling by a peptide.  相似文献   

5.
The hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) is a widespread receptor-coupled signalling system at the plasma membrane of most eukaryotic cells. The existence of an entirely separate nuclear phosphoinositide signalling system is suggested from evidence that purified nuclei synthesize PtdInsP2 and phosphatidylinositol 4-phosphate (PtdInsP) in vitro and that a transient decrease in the mass of these lipids occurs when Swiss 3T3 cells are cultured in the presence of insulin-like growth factor-1 (IGF-1). These IGF-1-dependent changes in inositol lipids coincide with an increase in nuclear diacyglycerol and precede translocation to the nucleus and activation of protein kinase C (refs 5, 6). Circumstantial evidence that links these changes with mitosis comes from the isolation of a 3T3 clone that expresses the type-1 IGF receptor and binds IGF-1 peptide but does not respond mitogenically or show transient mass changes in nuclear inositol lipids. A key question is how IGF-1 initiates the rapid breakdown of PtdInsP and PtdInsP2 in the nucleus. Here we present evidence that nuclei of 3T3 cells contain the beta-isozyme of phosphoinositidase C, whereas the gamma-isozyme is confined to the cytoplasm and that IGF-1 treatment stimulates exclusively the activity of nuclear phosphoinositidase C.  相似文献   

6.
Role of ERas in promoting tumour-like properties in mouse embryonic stem cells   总被引:10,自引:0,他引:10  
Takahashi K  Mitsui K  Yamanaka S 《Nature》2003,423(6939):541-545
Embryonic stem (ES) cells are pluripotent cells derived from early mammalian embryos. Their immortality and rapid growth make them attractive sources for stem cell therapies; however, they produce tumours (teratomas) when transplanted, which could preclude their therapeutic usage. Why ES cells, which lack chromosomal abnormalities, possess tumour-like properties is largely unknown. Here we show that mouse ES cells specifically express a Ras-like gene, which we have named ERas. We show that human HRasp, which is a recognized pseudogene, does not contain reported base substitutions and instead encodes the human orthologue of ERas. This protein contains amino-acid residues identical to those present in active mutants of Ras and causes oncogenic transformation in NIH 3T3 cells. ERas interacts with phosphatidylinositol-3-OH kinase but not with Raf. ERas-null ES cells maintain pluripotency but show significantly reduced growth and tumorigenicity, which are rescued by expression of ERas complementary DNA or by activated phosphatidylinositol-3-OH kinase. We conclude that the transforming oncogene ERas is important in the tumour-like growth properties of ES cells.  相似文献   

7.
M J Berridge  R F Irvine 《Nature》1984,312(5992):315-321
There has recently been rapid progress in understanding receptors that generate intracellular signals from inositol lipids. One of these lipids, phosphatidylinositol 4,5-bisphosphate, is hydrolysed to diacylglycerol and inositol trisphosphate as part of a signal transduction mechanism for controlling a variety of cellular processes including secretion, metabolism, phototransduction and cell proliferation. Diacylglycerol operates within the plane of the membrane to activate protein kinase C, whereas inositol trisphosphate is released into the cytoplasm to function as a second messenger for mobilizing intracellular calcium.  相似文献   

8.
R F Irvine  A J Letcher  J P Heslop  M J Berridge 《Nature》1986,320(6063):631-634
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.  相似文献   

9.
Molecular machinery for non-vesicular trafficking of ceramide   总被引:2,自引:0,他引:2  
Hanada K  Kumagai K  Yasuda S  Miura Y  Kawano M  Fukasawa M  Nishijima M 《Nature》2003,426(6968):803-809
Synthesis and sorting of lipids are essential for membrane biogenesis; however, the mechanisms underlying the transport of membrane lipids remain little understood. Ceramide is synthesized at the endoplasmic reticulum and translocated to the Golgi compartment for conversion to sphingomyelin. The main pathway of ceramide transport to the Golgi is genetically impaired in a mammalian mutant cell line, LY-A. Here we identify CERT as the factor defective in LY-A cells. CERT, which is identical to a splicing variant of Goodpasture antigen-binding protein, is a cytoplasmic protein with a phosphatidylinositol-4-monophosphate-binding (PtdIns4P) domain and a putative domain for catalysing lipid transfer. In vitro assays show that this lipid-transfer-catalysing domain specifically extracts ceramide from phospholipid bilayers. CERT expressed in LY-A cells has an amino acid substitution that destroys its PtdIns4P-binding activity, thereby impairing its Golgi-targeting function. We conclude that CERT mediates the intracellular trafficking of ceramide in a non-vesicular manner.  相似文献   

10.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   

11.
Receptors stimulating phospholipase C do so through heterotrimeric GTP-binding proteins to produce two second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol. In spite of the detailed understanding of phospholipase C structure and phosphatidyl inositol signalling, the identity of the GTP-binding protein involved is so far unknown. To address this issue, we have used the Xenopus oocyte in which muscarinic receptors couple to phospholipase C through a pertussis toxin-sensitive GTP-binding protein. In this cell, InsP3 mobilizes intracellular Ca2+ to evoke a Cl- current. The magnitude of this Cl- current is proportional to the amount of InsP3 in the cell, and therefore can be used as an assay for InsP3 production. We report here that the activated alpha-subunit of the GTP-binding protein GO, when directly injected into oocytes, evokes a Cl- current by mobilizing Ca2+ from intracellular InsP3-sensitive stores. We also show that holo-GO, when injected into oocytes, can specifically enhance the muscarinic receptor-stimulated Cl- current. These data indicate that GO can serve as the signal transducer of the receptor-regulated phospholipase C in Xenopus oocytes.  相似文献   

12.
M Vallejo  T Jackson  S Lightman  M R Hanley 《Nature》1987,330(6149):656-658
Although inositol 1,3,4,5,6-pentakisphosphate (InsP5) and hexakisphosphate (InsP6) have been recognized for some time as naturally-occurring metabolites of inositol, their occurrence in mammalian cell types, including one of neural origin, has only recently been documented. This is of interest because of the recognized second messenger role of inositol 1,4,5-trisphosphate (InsP3) in intracellular signalling; coupling surface stimuli to cytoplasmic calcium discharge. The metabolism, existence in normal mature tissues, and possible functional roles of these inositol polyphosphates are unknown. Here we report evidence that InsP5 and InsP6 are synthesized in intact brain after labelling with [3H]inositol in vivo. We also show that local infusion of InsP5 and InsP6 into a discrete brain stem nucleus implicated in cardiovascular regulation, results in dose-dependent changes in heart rate and blood pressure.  相似文献   

13.
磷脂酰肌醇转移蛋白质家族的研究进展   总被引:1,自引:0,他引:1  
脂类的单体转移是由一娄蛋白质来执行的,这组蛋白质把脂类结合到疏水腔,从而使脂娄避开了含水环境、其中的这样一组蛋白质是磷脂酰肌醇转移蛋白质家族(PITPs),能结合磷脂酰肌醇和磷脂酰胆碱,把它们从一个膜区转移到另一膜区.PITPs是在单细胞和多细胞组织中发现的,但在细菌中没有发现.在鼠和人类中,人们发现负责脂类转移的PITP结构域有五个蛋白,按照序列分成两类:类型I PITPs由两个家族成员α,β构成,它们是小蛋白35kDa,有一个PITP结构域,可以普遍表达;类型Ⅱ A PITPs(RdgBαI和Ⅱ)是很大的蛋白质,有另外的结构域,把蛋白质靶向膜,仅能结合脂类,但不能介导转移.类型Ⅱ B PITP(RdgBβ)与类型I在大小(38kDA)上相似,也是普遍表达的.类型Ⅲ PITPs,以secl4P家族为代表,是在酵母和植物中发现的,但是在序列和结构上与类型I和类型Ⅱ PITPs相似.讨论了PITP蛋白是被动转运蛋白辽是调节蛋白,在行使肌醇酯类和膜转换的专门的生物功能时,能否把转运和结合性质偶连起来.  相似文献   

14.
S Avissar  G Schreiber  A Danon  R H Belmaker 《Nature》1988,331(6155):440-442
Lithium is a unique drug with therapeutic as well as prophylactic value for both manic and depressive phases of manic-depressive illness. The precise mechanisms of its clinical efficacy remain unknown, but there are two main theories of its biochemical action. One proposes that lithium inhibits adrenergically activated adenylate cyclase function whereas the other suggests that it inhibits phosphatidyl inositol turnover, which is known to be activated by cholinergic agonists. Neither mechanism alone, however, can explain both the antimanic and antidepressant effects of lithium. Because of the pivotal role of G proteins in post-receptor information transduction, we have investigated the interaction of lithium with G protein function. Lithium at therapeutically efficacious concentrations completely blocked both adrenergic and cholinergic agonist-induced increases in [3H]GTP binding to membranes from rat cerebral cortex, in both in vitro and ex vivo experiments. The same lithium treatments also abolished guanine nucleotide modulation of agonist binding. Our findings suggest G proteins (Gs and Gi or Go) as the molecular site of action for both the antimanic and antidepressant effects of lithium.  相似文献   

15.
Ye K  Aghdasi B  Luo HR  Moriarity JL  Wu FY  Hong JJ  Hurt KJ  Bae SS  Suh PG  Snyder SH 《Nature》2002,415(6871):541-544
Phospholipase C gamma 1 (PLC-gamma 1) hydrolyses phosphatidylinositol-4,5-bisphosphate to the second messengers inositol-1,4,5-trisphosphate and diacylglycerol. PLC-gamma 1 also has mitogenic activity upon growth-factor-dependent tyrosine phosphorylation; however, this activity is not dependent on the phospholipase activity of PLC-gamma 1, but requires an SH3 domain. Here, we demonstrate that PLC-gamma 1 acts as a guanine nucleotide exchange factor (GEF) for PIKE (phosphatidylinositol-3-OH kinase (PI(3)K) enhancer). PIKE is a nuclear GTPase that activates nuclear PI(3)K activity, and mediates the physiological activation by nerve growth factor (NGF) of nuclear PI(3)K activity. This enzymatic activity accounts for the mitogenic properties of PLC-gamma 1.  相似文献   

16.
A common mechanism of action for three mood-stabilizing drugs   总被引:21,自引:0,他引:21  
Williams RS  Cheng L  Mudge AW  Harwood AJ 《Nature》2002,417(6886):292-295
Lithium, carbamazepine and valproic acid are effective mood-stabilizing treatments for bipolar affective disorder. The molecular mechanisms underlying the actions of these drugs and the illness itself are unknown. Berridge and colleagues suggested that inositol depletion may be the way that lithium works in bipolar affective disorder, but others have suggested that glycogen synthase kinase (GSK3) may be the relevant target. The action of valproic acid has been linked to both inositol depletion and to inhibition of histone deacetylase (HDAC). We show here that all three drugs inhibit the collapse of sensory neuron growth cones and increase growth cone area. These effects do not depend on GSK3 or HDAC inhibition. Inositol, however, reverses the effects of the drugs on growth cones, thus implicating inositol depletion in their action. Moreover, the development of Dictyostelium is sensitive to lithium and to valproic acid, but resistance to both is conferred by deletion of the gene that codes for prolyl oligopeptidase, which also regulates inositol metabolism. Inhibitors of prolyl oligopeptidase reverse the effects of all three drugs on sensory neuron growth cone area and collapse. These results suggest a molecular basis for both bipolar affective disorder and its treatment.  相似文献   

17.
Receptor protein-tyrosine kinases, through phosphorylation of specific tyrosine residues, generate high-affinity binding sites which direct assembly of multienzyme signalling complexes. Many of these signalling proteins, including phospholipase C gamma, GTPase-activating protein and phosphatidylinositol-3-OH kinase, contain src-homology 2 (SH2) domains, which bind with high affinity and specificity to tyrosine-phosphorylated sequences. The critical role played by SH2 domains in signalling has been highlighted by recent studies showing that mutation of specific phosphorylation sites on the platelet-derived growth factor receptor impair its association with phosphatidylinositol-3-OH kinase, preventing growth factor-induced mitogenesis. Here we report the solution structure of an isolated SH2 domain from the 85K regulatory subunit of phosphatidylinositol-3-OH kinase, determined using multidimensional nuclear magnetic resonance spectroscopy. The structure is characterized by a central region of beta-sheet flanked by two alpha-helices, with a highly flexible loop close to functionally important residues previously identified by site-directed mutagenesis.  相似文献   

18.
D J Storey  S B Shears  C J Kirk  R H Michell 《Nature》1984,312(5992):374-376
Many receptors for hormones, neurotransmitters and other signals cause hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and effect a rise in cytosolic Ca2+ concentration. The inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) liberated during PtdIns(4,5)P2 breakdown seems to serve as a second messenger that activates the release of Ca2+ from a nonmitochondrial intracellular compartment. As expected if it is an important intracellular messenger, Ins(1,4,5)P3 is relatively rapidly degraded, both within stimulated cells and when added to homogenates of blowfly salivary gland or to permeabilized, but not intact, hepatocytes. Here we report that the dephosphorylation reactions responsible for the conversion of Ins(1,4,5)P3 to free inositol in rat liver are catalysed by two or more enzymes, and that these reactions are distributed between the plasma membrane and cytosol. The Ins(1,4,5)P3 5-phosphatase and inositol 1-phosphate (Ins(1)P) phosphatase of liver appear similar to enzymes described previously in erythrocytes and brain.  相似文献   

19.
Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1 gamma (PtdInsPKI gamma) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKI gamma (PtdInsPKI gamma-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKI gamma-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKI gamma-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion.  相似文献   

20.
A Sp?t  P G Bradford  J S McKinney  R P Rubin  J W Putney 《Nature》1986,319(6053):514-516
Several receptors for neurotransmitters, hormones and growth factors cause accelerated phosphodiesteratic breakdown of polyphosphoinositides when activated. One of the soluble products of this reaction, inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) is thought to act as a second messenger signalling the release of Ca2+ from intracellular stores. In support of this hypothesis, several studies have shown that Ins(1,4,5)P3 releases sequestered Ca2+ from permeable cells and microsomes. On the basis of certain structural requirements for Ca2+-releasing activity by inositol phosphates, it has been postulated that Ins(1,4,5)P3 acts by binding to a specific intracellular receptor, probably on a component of the endoplasmic reticulum. Here we report that 32P-Ins(1,4,5)P3 binds to a specific saturable site in permeabilized guinea pig hepatocytes and rabbit neutrophils, and that the properties of this binding site suggest that it is the physiological receptor for Ins(1,4,5)P3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号