首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
对38CrMoAl钢进行440℃渗氮(100 mL/min氨气)后氧化(75 mL/min氨气+25 mL/min空气)改性层的制备及表征.改性层渗层增重和厚度分别为:440℃离子渗氮4 h处理,单位面积的增重为0.73 mg/cm2,厚度为152.4μm;440℃离子氮化4 h后氧化1 h处理,单位面积的增重为0.7...  相似文献   

2.
本文对经750℃~850℃温度范围内碳氮硼三元共渗后的20钢试样进行了渗层相结构与性能分析。力学性能试验证明三元共渗的渗层具有比渗碳和碳氮共渗更优越的硬度和耐磨性。三元共渗渗层强化机理主要是马氏体固溶强化和高弥散度的第二相强化。x射线和电镜分析证明高弥散的第二相粒子中除有ε相(Fe_2N—Fe_3N)外,还有Fe_2B相。  相似文献   

3.
以Fe_3O_4为核,以α-Fe_2O_3为壳层,合成出一种核壳结构的Fe_3O_4/α-Fe_2O_3纳米复合材料.采用扫描电镜(SEM)、透射电镜(TEM)和X-射线衍射仪(XRD)等表征手段对核壳材料的形貌、组成及结构等进行了表征,并将其应用于亚甲基蓝溶液的降解.结果表明:核壳结构的Fe_3O_4/α-Fe_2O_3纳米粒子粒径约为50~80nm.当H_2O_2用量为0.23mol/L,Fe_3O_4/α-Fe_2O_3投加量为5g/L,pH值为2,亚甲基蓝溶液初始质量浓度为5.0mg/L,60min内亚甲基蓝的降解可达98.7%.Fe_3O_4/α-Fe_2O_3纳米粒子经过3次循环使用后,对亚甲基蓝仍具有较好的降解能力.  相似文献   

4.
以硝酸铁为氧化剂,尿素为燃料,加入碳球载体,通过溶液燃烧法合成了Fe_2O_3/C复合材料.考察了引发溶液燃烧温度、燃烧时间对催化剂组成、结构、形貌的影响.结果表明,在不同引发燃烧温度下Fe_2O_3/C催化剂中Fe以α-Fe_2O_3或/和γ-Fe_2O_3晶体存在.前驱体在250、300、400℃引发燃烧,并保持20min,Fe_2O_3附着在碳球表面,形成粒径约200nm的球形结构;在400℃增加燃烧时间至60min,碳球被烧掉,得到粒径约200nm的空心泡状结构.这些材料在选择催化氧化苯甲醇制苯甲醛反应中显示了较高的活性.其中,400℃燃烧20min制得的Fe_2O_3/C催化剂活性最高.在优化条件下,苯甲醇的转化率和苯甲醛的选择性分别达到90.9%和87.7%.催化剂回收后,进行4次循环使用,显示了很好的稳定性.  相似文献   

5.
研究了热处理过程中α-Fe_2O_3还原、Fe_3O_4氧化机理,考察了还原、氧化条件对γ-Fe_2O_3微观结构及磁性的影响。结果表明,还原温度和还原气空速是影响还原程度的重要参数。当还原温度为380℃、空速为1200h~(-1)时,所获磁粉矫顽力最高。Fe_3O_4烧结为表面扩散控制。Fe_3O_4向γ-Fe_2O_3的相变过程能加速粒子烧结。同时发现,当Fe_3O_4氧化不充分时,立方γ-Fe_2O_3中存在四方γ-Fe_2O_3杂相。  相似文献   

6.
Q235钢快速碳氮共渗工艺   总被引:2,自引:0,他引:2  
由于传统碳氮共渗剂存在污染环境的不足,采用气体碳氮共渗技术对Q235钢进行表面改性处理,探讨在850℃时不同的保温时间实现快速碳氮共渗处理的可行性。利用金相显微镜、扫描电镜、X射线衍射仪、显微硬度计、磨损实验机等检测分析手段对渗层的显微组织、相组成、渗层厚度以及渗层的显微硬度和耐磨性能进行了研究。结果表明:随着碳氮共渗时间的增长,显微组织越来越致密;渗层厚度增加,850℃下保温7 h时渗层的厚度达到最大,约为1400μm,显微组织也最致密。碳氮共渗层的相组成主要由碳化物(Fe3C)、氮化物(Fe3N)组成。渗层的显微硬度随着碳氮共渗时间的增加而增加,其中保温7 h时HV0.2最大达到7.97 GPa,是Q235钢的7.5倍。该工艺下渗层的耐磨性能提高显著。  相似文献   

7.
为了探索在含Cl-环境中10CrMoAl钢的耐腐蚀机制,对10CrMoAl钢进行不同周期(72、168和240 h)的盐雾腐蚀试验,进而对其腐蚀结果进行对比分析,并对试样进行腐蚀速率分析、场发射扫描电子显微镜(FESEM)分析、能谱分析、X线衍射(XRD)分析及电化学阻抗谱分析。结果表明:随着腐蚀时间的延长,腐蚀速率逐渐降低。经过72、168和240 h腐蚀后,10CrMoAl钢的腐蚀速率分别为1.512、1.254和1.232 mm/a;当锈层厚度最大时,Cr和Mo在锈层内富集程度也达到最大,而且伴随着锈层的腐蚀脱落,Cr和Mo又在基体与锈层交界处逐渐富集,有效地阻碍了基体的腐蚀。此外,锈层中FeCr_2O_4的出现导致了Fe_3O_4逐渐消失和γ-Fe_2O_3相对量逐渐增加。锈层中FeCr_2O_4的出现明显改变了腐蚀产物的形成过程。  相似文献   

8.
离子氮化机理的初步探讨(二)   总被引:1,自引:0,他引:1  
对氮化表面沉积物进行x射线物相鉴定,发现沉积物为a-Fe、Fe_2N、Fe_4N、FeC以及Fe_3O_4,说明氮化时FeN→Fe_2N→Fe_3N→Fe_4N的分解反应是正确的。碳钢氮化层电子探针分析表明,氮浓度极大值位于扩散层与基体组织之间,而碳浓度较基体组织高,可能存在碳由基体组织向氮化层反向扩散的问题。用电子显微镜观察轰击表面,得到与金相显微镜观察相一致的结论。用x射线测定了离子轰击点阵静畸变,发现离子轰击和高温回火(520℃)产生ε→ε+r’的转变。  相似文献   

9.
合成了一种具有壳/核结构的水热碳包覆型Fe_2O_3@C微米球,可实现贵金属Pt催化剂的低价制备和高效利用.利用外壳水热碳的亲水特性,通过简单的常温吸附与低温焙烧的方法在Fe_2O_3@C微球表面原位负载Pt纳米颗粒,构筑了壳/核型Fe_2O_3@C-Pt催化剂.该催化剂在6min内实现对硝基苯酚的完全转化,循环10次后催化活性保持不变,表现出较高的催化活性和稳定性.作为内核的磁性γ-Fe_2O_3颗粒使得Fe_2O_3@C-Pt催化剂仅通过外加磁铁即可实现其在反应溶液中的快速分离,降低了催化剂的回收成本和时间,并显著提高回收产率.  相似文献   

10.
通过对不锈钢21-4N在不同温度,不同保温时间下离子氮硕共渗处理,检测其渗层厚度,表面硬度,并根据相应的温度,时间,渗层厚度及表面硬度值描绘出关系曲线,从而阐述不锈钢离子氮碳共渗处理工艺与渗层厚度,硬度之间的关系。  相似文献   

11.
在合金化渗氮的基础上,提出稀土合金化氮碳共渗新工艺,该工艺使氮碳共渗技术得到新的提高。40Cr结构钢(调质):稀土合金化氮碳共渗4h后,表面硬度HV5Kg700,渗层深度0.297mm。  相似文献   

12.
对20CrMnTi钢进行了520℃不同气氛等离子体渗氮处理。经氨氢和氨气离子渗氮8h后,增重分别为1.11mg/cm2和1.44mg/cm2,表面硬度分别为851.0HV0.05和835.0HV0.05。渗氮层由外层的“化合物层”和里层的“扩散层”组成。经氨氢和氨气离子渗氮后,化合物层的厚度分别为8~9μm和12μm。氨气渗氮8h后,改性层厚度最大,为350μm。氨氢混合气氛离子渗氮4h后的改性层为单一的γ’-Fe4N相。氨氢混合气氛渗氮8h和氨气渗氮4h和8h,改性层均由γ’-Fe4N和ε-Fe3N两相组成。与氨氢混合气氛渗氮相比,氨气渗氮层的XRD衍射峰强度显著下降,半高宽增加,显微组织相对细化。  相似文献   

13.
碳氮共渗是提高GCr15钢制喷油嘴性能的一种有效方法。为寻求较合理的工艺参数,本文介绍了几种共渗工艺试验,并分析了渗层组织、表面硬度及渗层硬度分布,不同回火温度下的硬度变化及冷处理对硬度和耐磨性的影响。  相似文献   

14.
针对采用传统厌氧生物技术处理含硝基芳香族化合物(NACs)废水时存在降解速率低、系统稳定性差和运行成本高等问题,以α-Fe_2O_3为电子传递介体与厌氧生物系统进行耦合,探究其降解以对硝基氯苯(4-CNB)为代表的NACs的效果,并阐述耦合作用机制。初始质量浓度为45 mg/L 的4-CNB在耦合系统内反应56 h后,其残留质量浓度为(3.24±0.13) mg/L,而在厌氧生物对照系统和α-Fe_2O_3对照系统中分别为(15.47±0.43)mg/L和(44.48±0.01)mg/L,表明α-Fe_2O_3的投加对厌氧生物降解4-CNB具有显著的强化作用。4-CNB在耦合系统内的降解效率与α-Fe_2O_3的投加量在1~3 g/L范围内呈现显著的正相关,当α-Fe_2O_3的投加量为5 g/L时,其对厌氧微生物产生较强的抑制作用。相比于厌氧对照系统,4-CNB在耦合系统内的降解更符合一级动力学,进一步验证了α-Fe_2O_3与厌氧微生物之间在降解4-CNB过程中具有一定的协同效应。此外,α-Fe_2O_3的投加可显著降低厌氧生物系统内的氧化还原电位(ORP)和增强pH自缓冲能力,这些均有利于4-CNB的还原降解。电子传递体系 (ETS) 活性在耦合系统和厌氧生物对照系统中分别为48.77 μg/(g·min)和32.19 μg/(g·min),进一步表明了α-Fe_2O_3可作为厌氧还原4-CNB过程的电子传递介质。综上所述,采用α-Fe_2O_3作为电子传递介质可以强化厌氧微生物的还原活性,可为实现含NACs废水的大规模处理提供新的技术储备。  相似文献   

15.
为了提高低碳钢的耐磨性,成功地采用等离子体电解碳氮共渗技术在不同电压下对低碳钢进行表面处理。使用往复式摩擦磨损测试仪分析改性表面的摩擦磨损性能;扫描电子显微镜(scanning electron microscope, SEM)和能谱仪(energy dispersive spectroscopy, EDS)分析渗透层的表面、截面形态和组成;使用3D共聚焦显微镜分析渗透层的磨痕;使用X射线衍射(X-ray diffraction, XRD)研究渗透层的相组成。结果表明,共渗层的厚度和显微硬度均随着施加电压的增加呈现先升高后降低的趋势,在电压为350 V时,共渗层厚度最厚,硬度最大,分别为130.24μm和846.7 HV,此时共渗层的摩擦系数最小,约为0.65,磨痕轮廓深度仅为14.79μm。液相等离子体电解渗技术在共渗层形成的铁碳化合物和铁氮化合物是其耐磨的主要原因。  相似文献   

16.
通过水热法制备Fe_3O_4磁性纳米微球,以此为核包覆TiO_2,并将核壳结构的TiO_2/Fe_3O_4附着在还原氧化石墨烯(RGO)片层结构上;利用扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附、X射线衍射仪(XRD)、震动样品磁强计(VSM)和X射线光电子能谱(XPS)表征了RGO/TiO_2/Fe_3O_4磁性复合纳米材料的形态结构、包覆情况、磁性和元素种类,同时考察了该催化剂在紫外光照射下催化脱色甲基橙的效果。实验结果表明,TiO_2均匀地包覆在Fe_3O_4表面,RGO/TiO_2/Fe_3O_4磁性复合纳米材料的比饱和磁化强度为19.0emu/g。以甲基橙的水溶液为模拟污染物,紫外光照射90min后RGO/TiO_2/Fe_3O_4复合纳米材料对甲基橙的脱色率达到91%。  相似文献   

17.
以TiCL_4、FeCL_3·6H_2O、NH_3·H_2O和H_2SO_4为原料,采用共沉淀硫酸浸渍法制备SO_4~(2-)/TiO_2-Fe_2O_3固体超强酸,用滴定法测定催化剂的酸性;用FTIR、XRD、TG-DSC、SEM和EDS表征催化剂结构;用粒径分析仪表征催化剂的粒径分布.结果表明:复合氧化物TiO_2-Fe_2O_3中,TiO_2以无定形方式分布在Fe_2O_3表面,以Ti-O-Fe键形成键联,经适宜浓度硫酸浸渍焙烧后,Fe2O3的骨架结构未发生明显变化,SO_4~(2-)负载在TiO_2-Fe_2O_3上.通过试验,得到Ti-Fe摩尔比1∶2,浸渍液硫酸浓度0.5mol/L,在550℃焙烧3h制得的SO_4~(2-)/TiO_2-Fe_2O_3催化剂酸性较强,比表面积较大,催化活性较佳.  相似文献   

18.
采用一定比例的TiO_2、Cr_2O_3和Al粉还原法对普通碳钢(FlOA、45)进行了粉末钛铬共渗的研究。在1000℃、4h条件下,能得到较佳的共渗层,其表面硬度可达1500~2000Hv_(0.1),耐磨、抗氧化、抗腐蚀性能均有显著提高。共渗层可进行热处理,渗层组织结构不变,基体性能却大大提高。  相似文献   

19.
Fe_2O_3作为一种光催化材料,在光催化降解抗生素类污染物方面有着广泛的应用.为了进一步提高β-Fe_2O_3在可见光下降解水中抗生素的催化效率,通过水热法和浸渍法合成了β-Fe_2O_3、g-C3N4/β-Fe_2O_3和Ag/β-Fe_2O_3材料,并通过XRD、SEM、DRS、FTIR、XPS等现代表征技术手段对制备出的光催化剂进行了结构及光催化性能分析.并比较了可见光下β-Fe_2O_3、g-C3N4/β-Fe_2O_3和Ag/β-Fe_2O_3材料光催化降解效果.结果表明:在pH为10时制备的负载1.5 wt%Ag的Ag/β-Fe_2O_3催化材料在可见光下降解四环素的效率最高,降解率达到了95%(120min),表现出很好的催化活性,为利用光催化法处理抗生素废水提供了一种新型的可见光催化材料.  相似文献   

20.
通过对铁铬催化剂S_8在反应条件下(350℃、水蒸汽:半水煤气=2:1、气流速度为250ml/hr。)的穆斯堡尔谱测定表明为Fe_(3-)Cr_xO_4体系。550℃耐热处理后,顺磁部分增加,得到更多的小颗粒固溶体。提高气流速度还原不完全,有γ-Fe_2O_3形成。在该反应条件下γ-Fe_3O_3可视为α-Fe_2O_3还原成Fe_3O_4的中间相。小颗粒固溶体的增加导致催化剂活性的上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号