首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以废弃物黄豆渣为原料,采用KOH化学活化方法制备了氮掺杂的高比表面积多孔炭材料.通过N2吸附-脱附、SEM、TEM和XPS等方法表征了黄豆渣基炭材料的孔道结构和表面性质.以此炭材料为电极材料,分别以1mol·L-1 H2SO4和6mol·L-1 KOH为电解液组装成超级电容器,利用循环伏安、恒流充放电和交流阻抗等电化学测试方法研究其电化学电容性能并详细阐释了其电容形成机制.结果表明,通过调节活化剂KOH与原料的质量比,可以得到不同比表面积和氮掺杂含量的炭材料,活化后的炭材料在1mol·L-1 H2SO4和6mol·L-1 KOH电解液中的电容值分别达到了410F·g-1和425F·g-1,且在氢氧化钾电解液中10A·g-1的大电流密度下,电容值仍能保持275F·g-1以上.  相似文献   

2.
采用树枝状聚苯胺,长纤维聚苯胺,树枝状聚苯胺-石墨烯以及长纤维聚苯胺-氮掺杂石墨烯4种气凝胶作为前驱体,经直接碳化后获得了氮掺杂连续的纳米碳.研究了聚苯胺基气凝胶衍生纳米碳的微观形貌结构、元素组成以及电化学性能.结果表明,树枝状聚苯胺,长纤维聚苯胺,树枝状聚苯胺-石墨烯以及长纤维聚苯胺-氮掺杂石墨烯气凝胶衍生的纳米碳具有连续的多级孔结构,其比表面积分别为273.9、487.7、241.4和295.9 m2·g-1,氮的摩尔分数分别高达7.82%、9.62%、7.91%和10.17%,在0.5 A·g-1的电流密度下分别具有高达268、311、280和362 F·g-1的质量比电容,且倍率性能和循环稳定性能优异.  相似文献   

3.
以氧化石墨烯(GO)为原料,三聚氰胺为还原剂和氮掺杂剂,经过水热法制备出了氮掺杂石墨烯(NRG)三维网络.通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)、氮气吸脱附分析和电化学表征等测试手段对样品的形貌、结构和电化学性能进行表征.结果表明:三聚氰胺在水热的条件下有效地将GO还原并实现氮掺杂,三聚氰胺将氧化石墨烯还原之后,使得石墨烯之间的相互作用力增强,从而使石墨烯搭建出三维网络结构,其氮含量可达4.37%.电化学测试表明,当GO与三聚氰胺质量比为1∶2(NRG-2)时,在1A/g时其最大比电容值达到了296F/g,这个比电容值高于其他不同GO与三聚氰胺质量比所制备出的氮掺杂石墨烯的比电容值.NRG-2还显示出优良的循环寿命,经过1 000次恒电流充放电循环后比电容保留量为88.5%.  相似文献   

4.
为探究更绿色环保的三维还原氧化石墨烯的制备方法,采用简单易行的一步水热法,以Vc为绿色还原剂,L-天冬素为N源,在90℃下分别反应1、2、3、5、10h,制得N掺杂的三维石墨烯水凝胶,经冷冻干燥得气凝胶;在三电极体系下对材料进行电化学测试,测试结果表明:在反应时间为3h时,比电容值最高,在电流密度为1A/g时,比电容值达173.8F/g.且经过1 000次充放电循环后,比电容保持率为83%.且内阻较小(0.6Ω),具有很好的功率性能和电容行为.  相似文献   

5.
通过两步溶液自组装方法,制备了具有三维多孔网络结构的石墨烯基聚苯胺复合水凝胶(PR-x),并通过SEM、XRD、FT-IR、Raman、XPS等表征手段对样品的微观形貌和结构组成进行了表征分析.结果表明,聚苯胺均匀地负载于三维多孔石墨烯网络骨架,且能够显著抑制石墨烯的团聚现象.研究了石墨烯基聚苯胺复合水凝胶电极的电化学性能.当聚苯胺质量分数为75%,电流密度为1 A·g-1时,比电容为762.8 F·g-1;当扫描速率从5 mV·s-1增加到50 mV·s-1时,倍率保留率高达77%,经过3000次恒电流充放电后比电容保留率仍高达89.27%.该石墨烯基聚苯胺复合水凝胶电极作为超级电容器表现出优异的放电容量、倍率性能和循环稳定性,具有一定的潜在应用价值.  相似文献   

6.
以化学气相沉积法制备的三维网状石墨烯/泡沫镍(3DGE/NF)为基底,电化学沉积Ni掺杂Co(OH)2纳米片得到三维镍钴双氢氧化物/石墨烯/泡沫镍(3D NixCo1-x(OH)2/GE/NF)复合电极材料,研究Ni掺杂量对材料的形貌及电化学性能的影响.结果表明:在Co(OH)2中掺杂适量的Ni可以改善材料的表面形貌;高质量、高导电性石墨烯的存在促进电极与电解液的电荷传输,加上镍钴的协同作用,能有效提高材料的比容量和循环倍率性能.当Ni掺杂量为34%时,3D Ni0.34Co0.66(OH)2/GE/NF复合电极材料具有最佳的电化学性能,当电流密度为3 A/g时,其在1mol/L的KOH电解液中比容量达到1 714F/g,当电流密度升高到30A/g时比容量仍保持有73%达到1 254F/g,显示出较好的倍率性,且在10A/g的大电流密度下经过500次循环后,比容量保持率为83%.  相似文献   

7.
通过两步法成功将氮掺杂石墨烯量子点(N-doped graphene quantum dots,N-GQDs)与金属有机骨架衍生碳材料(cZIF-8)组合制备出N-GQDs@cZIF-8超级电容器.1 mol/L H_2SO_4电解质中,该电极在0.5 A·g~(-1)电流密度下具有246.6 F·g~(-1)的比容量,在循环8000次时仍然保持83.7%的容量保留率,展现了优异的循环稳定性.同时, NGQDs@cZIF-8超级电容器在104.5 W·kg~(-1)的功率密度下获得了8.2 W·h·kg~(-1)的优异能量存储能力,这样显著的电化学性能主要因其具有高比表面积的三维结构和高赝电容活性的氮掺杂水平(10.13%),使其在超级电容器、锂离子电池等能量存储领域具有潜在的应用前景.  相似文献   

8.
以植酸(PA)、三聚氰胺(MA)、四水合乙酸钴(Co(OAc)2·4H2O)和聚偏氟乙烯(PVDF)中空纤维膜为原料,采用一锅法合成了偏磷酸钴和氮(N)掺杂碳(C)的复合材料(Co(PO3)2@C).其中,PA属于六齿配体,拥有6个磷酸基,每个磷酸基中的氧原子(O)都可作为配位原子和钴离子发生络合反应,形成化学性质稳定的络合物,可以作为绿色磷(P)源.MA含有丰富的N元素,PVDF中空纤维膜中含有氟(F)元素,同时还可以提供框架结构,N和F元素的掺杂可以使多孔碳材料具有更好的润湿性,有利于电解液中电子的传输,从而极大提高了材料的电化学电容性能.所制备的最佳活性负极材料在1 A·g-1时的比电容为1 067.42 F·g-1.即使在10 A·g-1的电流密度下,20 000次循环后,仍可以达到85.79%的保留率.  相似文献   

9.
用固相合成法制备Ag2O作为超级电容器材料,通过循环伏安与恒流充放电等测试手段对Ag2O电极及与作为负极的活性炭电极组成的电容进行分析.结果表明,在7mol·L-1KOH电解液中,Ag2O电极在0.15~0.35V(相对于Hg/HgO)的电压范围内表现出了法拉第电容特性.在不同电流密度下,电极比容量达427.3~554.9F·g-1,Ag2O/活性炭单体电容器比电容为42.5~61.65F·g-1.同时还对正极中Ag2O的含量及导电剂对Ag2O/活性炭单体电容器性能的影响进行了研究.  相似文献   

10.
以氧化石墨烯(GO)为原料、硫酸铵((NH_4)_2SO_4)为动态气体模板剂,采用浸渍结合焙烧工艺制备了氮掺杂多孔薄层石墨烯(p-Gr).利用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、拉曼光谱(Raman)、氮气吸附-脱附(N_2adsorption-desorption)等手段对所得材料进行了表征,并考察了不同硫酸铵用量对所制材料电容性能的影响.结果表明,与未活化的石墨烯(Gr)相比(S_(BET)=70.5m~2/g),所制p-Gr-40具有更大的比表面积(S_(BET)=267.3m~2/g)、更为丰富的孔结构以及优异的电化学性能.在三电极超级电容器中,在电流密度为1A/g时,p-Gr-40比电容可达139.2F/g,远远高于Gr(56.5F/g);在对称两电极超级电容器中,在功率密度为160.03W/kg时,p-Gr-40的能量密度为12.98Wh/kg,其比电容在充放电循环10 000圈后仍保持基本不变.这些优异的电化学性能源于其多孔结构及杂原子(如氮)掺杂.  相似文献   

11.
以人发和蔗糖为炭源,通过水热碳化法和相继的KOH活化法,成功制备了N,S双掺杂活性炭.通过SEM、氮气吸附和XPS对所制备的碳材料的形貌、结构和表面性质进行了详细的表征.在6mol·L-1 KOH电解液中,对所制备的碳材料的电化学电容性能进行了测试.由于N、O、S等多种类的元素掺杂所表现出来的协同效应,所制备的碳材料表现出较大的赝电容,在6mol·L-1KOH电解液中的比电容值可以达到174.5F·g-1.实验利用可再生生物质,成功制备出了多种杂原子掺杂的碳材料,该碳材料拥有高比表面积和优异的电化学性能.  相似文献   

12.
以酚醛树脂为前驱体,以聚乙二醇为致孔剂,采用聚合物共混法制备超级电容器用中孔炭电极材料. 采用N2吸附法测试了炭材料的比表面积和孔结构参数. 采用恒流充放电、循环伏安、交流阻抗等评价了其在1mol·L-1Et4NBF4/PC有机电解液中的电化学双电层电容性能. 结果表明,酚醛树脂和聚乙二醇等比例共混炭化制备的多孔炭的比表面积为618m2·g-1,中孔率为59.7%,比电容为32F·g-1,大电流性能和循环性能良好.  相似文献   

13.
以鳞片石墨为原料,采用化学氧化还原法制备了高品质的石墨烯.借助X射线衍射分析、扫描电子显微镜和透射电子显微镜观察、氮气吸附--脱附实验、恒流充放电实验、循环伏安法和交流阻抗谱技术对石墨烯的结构、形貌、表面性能和超级电容性能进行了系统研究.X射线衍射、扫描电镜和透射电镜结果表明,石墨烯整体上呈现无序结构,外观具有蓬松、透明的薄纱状及本征性皱褶,其BET比表面积为14.2m2·g-1,总孔容为0.06cm3·g-1,平均孔径为17.3nm.交流阻抗谱测试结果表明,石墨烯电极具有较小的阻抗,其等效串联电阻为0.16Ω,电荷传递电阻为0.55Ω.恒流充放电和循环伏安测试结果显示:石墨烯电极具有良好的功率特性和循环稳定性,电容特征显著.在2、5、10和20mV·s-1扫描速度下的放电比电容分别为123、113、101和89 F·g-1;即使是50mV·s-1的高扫速,放电比电容仍可达69F·g-1.  相似文献   

14.
采用水热合成法,将间苯二酚甲醛树脂涂覆在还原氧化石墨烯片层上,经冷冻干燥及炭化后构筑三维炭/还原氧化石墨烯纳米片。使用SEM、TEM、FTIR、XPS等对样品的形貌与结构进行表征,利用循环伏安、恒流充放电及电化学阻抗法测试了样品的电化学性能。结果表明,间苯二酚甲醛树脂成功将还原氧化石墨烯片包覆,二者构筑的三维炭/还原氧化石墨烯复合纳米片厚度为25nm;当循环伏安测试扫描速率为20mV/s时,三维炭/还原氧化石墨烯纳米片电极材料的比电容分别为还原氧化石墨烯与间苯二酚甲醛树脂炭电极材料相应值的1.8和2.8倍;在0.2A/g的充电电流密度下,三维炭/还原氧化石墨烯纳米片电极材料比电容为154.4F/g。  相似文献   

15.
碱处理对剑麻基活性炭电化学性能的影响   总被引:1,自引:0,他引:1  
采用剑麻制得生物质碳材料,取部分所得碳材料进行碱处理.借助X射线衍射(XRD)、扫描电子显微镜(SEM)等对材料的结构和形貌进行了表征,并采用三电极体系,通过恒流充放电、循环伏安等方法,对该碳材料的充放电特性和比电容进行考察.恒流充放电测试结果表明,在电流密度为1A·g-1时,未经碱处理样品的电极放电比电容为231.85F·g-1,而经碱处理的样品则增至290.35F·g-1;在其它电流密度下,经碱处理样品的电极放电比电容总是大于未经碱处理的样品,经1000次循环后,样品比电容有所增加,经碱处理的样品具有更好的循环稳定性,且碳碱质量比为7:1时,比电容达到最大.  相似文献   

16.
以改进的Hummer法制备氧化石墨(GO),用原位聚合法合成聚吡咯/氧化石墨(Ppy/GO)复合物,运用CV和CP法测试电化学性能,并以XRD,FTIR,SEM分析材料的结构形貌.结果表明:(1)Ppy/GO复合物具有较好的电化学电容性能.当电流密度为0.5A.g-1时,复合物在1mol.L-1 H2SO4溶液中的比电容可达358.93F.g-1.(2)Ppy/GO复合物较Ppy有更好的循环稳定性和倍率充放电性能.当扫描速率分别为10,20,50mV.s-1时,复合物电极的循环伏安曲线均呈现出良好的矩形特征,并能保持一致性,而在相同扫描速率下,Ppy的循环伏安曲线不稳定;当电流密度分别为1,2,5A.g-1时,复合物的比电容分别达204.71,130.82,60.21F.g-1,高于相同条件下Ppy的178.05,123.89,46.52F.g-1.以上说明将聚吡咯与氧化石墨形成复合物有利于改善聚吡咯的电化学电容性能.  相似文献   

17.
有机体系下,采用循环伏安法(CV)在活性炭电极表面电聚合聚苯胺制备聚苯胺/活性炭复合电极,通过循环伏安、恒流充放电和电化学交流阻抗谱(EIS)测试了电极的电化学特性,结果表明,聚苯胺/活性炭复合电极具有良好的电容行为,在-1.0~1.5V参比极为Ag/AgCl,测试区间内具有较大的电化学容量,电极比电容高达276F·g-1,较活性炭电极的比电容92F·g-1有了很大提高.并且交流阻抗法测得活性炭电极的电荷转移电阻Rct为4.9Ω,而复合电极Rct仅2.4Ω.1000次充放电测试后,复合电极比电容仅衰减15.7%.由此表明,在有机体系下聚苯胺/活性炭复合电极是一种具有良好循环寿命和高比电容的复合电极材料.  相似文献   

18.
通过水热法在160℃条件下成功制备了手风琴状石墨烯/MnO2复合材料.通过场发射扫描电镜、透射电镜、X射线衍射、X射线能量色散谱、BET法以及拉曼光谱对材料进行表征.结果表明,手风琴状二氧化锰与层状石墨烯之间具有十分高效的贴合,这种创新性设计有效地利用了石墨烯的高电导率、大比表面积以及二氧化锰的优秀赝电容行为.电化学测试结果给出在0.2 A·g-1时,样品的比电容高达138 F·g-1,数倍增强于单独的二氧化锰或石墨烯样品.  相似文献   

19.
三维泡沫镍(Ni)基石墨烯(graphene)结构具有理想的自支撑特性,但却受制于有限的容量。以三维Ni基graphene为催化基底,通过一步水热法,在三维Ni基graphene骨架上形成二氧化锰/石墨烯/泡沫镍(MnO2/graphene/Ni)的异质结电极。MnO2的形貌随着水热反应温度的增加而呈现出纳米花状、纳米花与纳米棒的混合结构以及纳米棒状。通过循环伏安、恒电流充放电等研究方法,发现具有纳米花状与纳米棒状混合结构的MnO2/graphene/Ni异质结电极,在电流密度为0.1 A·g-1时达到最大比电容193 F·g-1,并且在电流密度为1 A·g-1时,经过1 000次恒电流充放电后,依然保持104%的初始容量,是一种潜在的电化学性能稳定的超级电容器电极材料。  相似文献   

20.
通过在氧化石墨烯(GO)表面原位聚合吡咯(Py)制备了聚吡咯(PPy)/GO复合物(PGO);以PGO为前驱体,经水热过程后,用KOH作为活化剂得到了三维氮掺杂多孔炭/石墨烯(NPCG)网络结构,采用XPS、SEM和N2吸/脱附等手段对其形貌和结构进行了表征;系统地研究了GO与Py的质量比和活化温度对合成的NPCG电化学性能的影响。结果表明:当GO与Py和PGO与KOH的质量比分别为1/15和1/3时,650℃活化温度下合成的NPCG具有优异的电化学性能,当电流密度为1 A/g时,其比容量高达398 F/g;在电流密度为10 A/g条件下,经1000次充放电循环后,其比容量保持率为94%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号