共查询到20条相似文献,搜索用时 8 毫秒
1.
针对在星间相对导航中噪声的统计特性未知可能引起滤波估计精度下降甚至发散的问题,提出了一种自适应简化容积卡尔曼滤波(ASCKF)算法。将Sage-Husa自适应滤波与容积卡尔曼滤波(CKF)相结合,通过容积规则摆脱线性滤波的局限性。改进Sage-Husa噪声估计器以避免噪声方差在线估计可能出现的非正定现象,从而保证了滤波器对噪声统计变化的自适应能力。结合编队卫星运动模型的特点,用常规卡尔曼滤波(KF)的时间更新代替相应的容积变换过程,在不影响滤波器性能的前提下减少了运算量。仿真结果表明:在测量噪声统计特性未知的情况下,与CKF相比,该文算法对相对状态的估计精度提高了近25%,同时滤波器的稳定性也得到了提高。 相似文献
2.
基于等权平均压缩技术的雷达/红外传感器融合算法 总被引:1,自引:0,他引:1
针对雷达/红外传感器融合时经常面临的数据采样率不相等问题,提出了一种基于等权平均量测压缩技术的雷达/红外融合算法。该算法通过将高采样率的红外角度量测数据进行等权平均压缩,更有效地利用了目标信息,进而提高了雷达/红外融合后的信息精度。仿真结果验证了算法的有效性;且相对于最小二乘压缩的雷达/红外融合算法具有更高的精度。 相似文献
3.
自适应强跟踪容积卡尔曼滤波算法 总被引:1,自引:0,他引:1
提出了一种自适应强跟踪容积卡尔曼滤波算法(ASTSCKF),该算法在平方根容积卡尔曼滤波算法(SCKF)步骤中引入强跟踪滤波器(STF),通过渐消因子在线修正一步预测误差协方差矩阵,强迫输出残差序列正交,使得算法具有应对系统状态突变等不确定因素的能力,增强了算法的鲁棒性;结合改进渐消记忆时变噪声统计估计器,对噪声方差阵进行实时在线估计,有效解决了SCKF算法由于噪声统计不准确、未知或时变性带来的滤波发散问题,使其具有应对噪声变化的自适应能力。仿真实验结果表明:ASTSCKF算法在系统状态发生突变并且噪声变化的情况下,能够表现出良好的滤波性能,较SCKF算法有更强的鲁棒性以及噪声变化的自适应性。 相似文献
4.
针对系统受有色噪声污染时容积卡尔曼滤波(CKF)算法滤波精度下降甚至发散的问题,提出了基于量测信息增广的改进CKF算法。改进算法采用量测信息增广方式,将有色噪声白噪声化,再将白化后的噪声和系统噪声去相关化,从而解决了一类有色噪声污染的线性观测系统的状态估计问题。将本文算法应用于生物地球化学仿真模型,对生物圈植被碳含量进行动态估计,仿真结果表明,改进算法具有较高的精度和鲁棒性。 相似文献
5.
针对使用容积卡尔曼滤波算法(Cubature Kalman Filter, CKF)在复杂非线性状态估计时存在的误差较大、运算速度慢等问题,引入一款改进后的平方根容积卡尔曼滤波算法(Square-Root Cubature Kalman Filter, SRCKF)。建立非线性系统线性化模型和电机数学模型,引入SRCKF实现对转速和转子位置的状态估计,在Matlab/Simulink环境下对SRCKF和CKF两种算法进行仿真。结果表明:平方根容积卡尔曼滤波大大降低了电机在状态估计时的运行速度和估计误差,提高了估计精度,系统更加稳定。 相似文献
6.
针对高维数据下的聚类效果需要提高,提出一种基于期望最大化的k-means聚类改进算法.该算法在没有降维和破坏原有数据结构的情况下,把期望最大化算法和k-means算法相结合,用期望最大化算法选取k-means的算法的初始聚类中心.并针对高维数据提出一种新的距离算法,代替传统的距离算法.实验结果表明提出的算法的可行性,并且在处理高维数据时的有效性. 相似文献
7.
基于卡尔曼滤波的舰船传感器信号的小波阈值去噪 总被引:3,自引:0,他引:3
采用小波去噪中的阈值方法对舰船传感器的量测信息进行了去噪处理,从而降低了量测信息中噪声对卡尔曼滤波精度的影响.通过对实测船位数据的仿真,并与GPS船位数据比对,证明该方法有效地提高了卡尔曼滤波的估计精度,也使航行曲线更加地“光滑”. 相似文献
8.
传统的液位测量,像超声波液位测量法、浮沉液位测量法等等。这些方法的测量准确度都不似乎很高而且容易受到环境的影响。为了克服这些问题,本文提出用基于红外CCD的传感器来对液位进行测量。经过分析也设计得出了红外CCD液位测量系统精度较高受环境影响小的结论。 相似文献
9.
红外图像具有被动成像、抗干扰性强、目标识别能力强和全天候工作的特点,已经被广泛应用于军事侦察、监控和制导等领域.在背景干扰或者遮挡情况下传统的Mean Shift跟踪算法的跟踪存在不连续的问题.针对人体目标的活跃性和特殊性,设计一种在Mean Shift算法基础上结合卡尔曼滤波和Bhattacharyya系数遮挡判定因子的目标跟踪系统.当遮挡发生时,通过滤波器预测目标下一帧的位置,继续实现跟踪.测试结果表明:在背景干扰或者遮挡的情况下该跟踪系统可以有效地对目标进行准确跟踪. 相似文献
10.
在全球卫星导航系统/惯性导航系统(global navigation satellite system/inertial navigation system,GNSS/INS)组合系统中,状态模型误差和异常扰动的影响严重降低了标准卡尔曼滤波的性能,而基于预测残差自适应的卡尔曼滤波随计算次数的增加滤波效果降低,且使用统一的自适应因子调节不可靠。针对上述问题,提出一种改进算法,利用预测残差建立的统计量调节位置向量和速度向量,避免了其他参数对滤波的平衡作用;通过预测残差的概率密度建立马氏距离进行假设检验,在模型正常时使用标准卡尔曼滤波,模型异常时使用改进滤波算法;采用实测车载数据对标准卡尔曼滤波、单因子自适应滤波和本文的滤波方法进行评估,实验结果表明:改进的自适应卡尔曼滤波的滤波算法效果良好,证明了所提算法的有效性。 相似文献
11.
针对复杂环境下雷达目标跟踪系统易受外界干扰引入噪声污染分布问题,为了保证系统实时可靠,提出了一种基于新息自适应的扩展卡尔曼滤波雷达目标跟踪算法(innovation-based adaptive extended Kalman filter, IAEKF)。通过建立系统新息统计特性,构造系统与量测噪声函数,将新息协方差直接引入滤波器增益矩阵计算,在不增加计算代价的同时,改善算法的自适应性。仿真实验表明,在雷达测量系统受时变噪声污染分布影响下,IAEKF算法相比EKF算法跟踪精度高,算法可行且有效,具有一定的工程研究价值。 相似文献
12.
目前,分布式视频编码(DVC)由于具有低复杂编码特性而成为视频编码领域的研究热点。DVC中,边信息性能对系统性能影响很大,一般而言,边信息性能越好,则整个系统压缩性能越好。本文研究了一种基于贝叶斯准则的期望最大化(Expectation Maximization,EM)边信息产生方法,并从运动搜索模板和初始概率模型两方面对EM算法提出了改进。实验表明,在几乎相同的率失真性能下,两种改进算法的学习时间分别缩短了30%和16%。 相似文献
13.
提出了基于直接螺旋半扫描数据的有序子集期望最大化(OSEM)迭代重建.该方案省略了螺旋CT中对投影数据的插值步骤,利用螺旋CT中相邻重建层间的相似性,将当前层的重建结果作为下一层重建时OSEM算法的初始输入.实验结果表明,在螺距较小的情况下,该重建方案使得螺旋CT在重建质量优于滤波反投影的前提下,所需的重建时间显著减少. 相似文献
14.
为了提高四旋翼无人机姿态解算的精度,提出了基于平方根容积卡尔曼滤波(square-root cubature Kalman filter,SCKF)的多传感器数据融合策略。基于加速度计、磁力计和陀螺仪输出的数据,采用了四元数的姿态解算方法,避免了单一传感器获得的姿态角误差过大的问题,解决了扩展卡尔曼滤波(extend Kalman filter,EKF)精度低以及无迹卡尔曼滤波(unscented Kalman filter,UKF)、容积卡尔曼滤波(cubature Kalman filter,CKF)协方差矩阵正定性丧失的问题。设计了基于pixhawk飞控板的实验方案。通过实验数据表明,与传统的EKF、UKF、CKF算法相比,SCKF的精度最高。且与UKF、CKF算法相比,SCKF具有计算时间少、数值计算稳定性强等优势。 相似文献
15.
针对基于期望最大化(EM)迭代算法的正更频分多路复用(OFDM)信道估计方法复杂度高、收敛慢,严重制约OFDM的传输速率的缺陷,提出了一种基于EM加速算法的OFDM信道估计方法.该方法基于拟牛顿加速算法,并结合一种带调整参数的Broyden对称秩1校正公式来实现,具有二次收敛性,提高了EM的计算速度,降低了计算复杂度.仿真结果表明,相比于空间选择期望最大算法,在性能损失只有0.1dB的情况下,EM算法的复杂度得到很大的降低,且其计算速度可提高十几倍. 相似文献
16.
提出了一种在UG环境下齿轮泵工作容腔容积的测量方法,对CB—B100型齿轮泵进行了几何建模和工作容腔容积的测量,并绘制出了各工作容腔容积的变化曲线.从图中可以清楚地看出各工作容腔容积的周期性变化规律,可以利用测得的数据对齿轮泵进行工作特性分析,为齿轮泵的流量等特性参的数数值分析奠定基础. 相似文献
17.
针对常规自适应卡尔曼滤波器存在过渡过程差的问题,基于一个给定的指标切换函数,采用多个基于不同动态噪声协方差矩阵的卡尔曼滤波器和一个常规自适应卡尔曼滤波器共同组成多模型自适应卡尔曼滤波器.与常规自适应卡尔曼滤波器相比,多模型自适应卡尔曼滤波器可以在保持原有自适应滤波器性能的基础上极大地改善瞬态响应. 相似文献
18.
针对量测随机丢失和厚尾量测噪声条件下的非线性状态估计易发散问题,提出了一种新的非线性卡尔曼滤波方法。引入服从Gamma分布的辅助参数,将厚尾量测噪声建模为Student’s t分布,以解决厚尾噪声导致的状态估计易发散问题,并采用服从Benroulli分布的随机变量来描述量测信号随机丢失的现象;在量测随机丢失下,基于目标状态和未知参数建立联合后验分布,并使用变分贝叶斯方法,联合估计系统状态、量测丢失概率和未知的厚尾噪声。非线性目标跟踪仿真实验表明,提出的算法可自适应估计未知的量测丢失概率,在野值概率为5%的条件下,算法目标跟踪的位置、速度和转动速率均方根误差分别为对比算法的37%、28%和60%;在野值概率为10%的条件下,其他算法均出现了发散现象,而提出的算法依然能够以较低的误差跟踪目标,体现了所提算法良好的鲁棒性和优越性。 相似文献
19.
20.
基于自适应卡尔曼滤波的时变结构参数估计 总被引:2,自引:2,他引:2
在许多情况下,对于非平稳或性能随时间发生变化的结构,要求对结构的参数进行实时的跟踪与识别,此时传统的递推算法.如卡尔曼滤波等方法就不再适用,而需要采用具有一定跟踪能力的自适应递推算法.本文对自适应卡尔曼滤波方法在时变结构参数估计中的应用进行了分析,并对其跟踪性能进行了探讨. 相似文献