首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
随着风电并网渗透率不断提高,风电并网的功率波动对电网产生的不利影响逐渐显现.本文将储能系统(ESS)用于抑制风电发电系统的功率波动性.同时考虑ESS荷电状态(SOC)和风电功率波动率的情况下设计了一种基于指数平滑法(ES)的平抑风电功率波动的储能控制策略方法.算例结果验证了该控制策略的正确性和有效性.  相似文献   

2.
风电功率具有波动性,不利于电力系统正常运行,因此构建了由两组超级电容器和两组蓄电池组成的双配置混合储能系统,用以平抑波动。两组超级电容器根据实时荷电状态交替补偿高频正、负功率波动,分别处于充、放电状态;当任意一组达到荷电状态上限约束值或下限约束值,则同时切换两组超级电容器的充放电状态,保证其处于不同的工作状态。两组蓄电池采用同样的控制策略,用于补偿低频正、负功率波动。最后,对某风电场历史数据进行仿真分析,结果表明,该方案可有效提高储能装置利用效率,降低其容量配置;并且大幅度降低了储能装置充放电切换次数,提高了循环使用寿命。  相似文献   

3.
受数值天气预报信息影响,风电功率变化具有较强的随机波动性,传统单一预测模型精度较低,难以满足现实预测需求。为此,提出基于LSTM-XGboost组合的超短期风电功率预测方法。首先,基于风电场的气象数据,采用皮尔逊相关系数法筛选与风电功率强相关的气象数据,建立风电功率预测模型数据集;然后,将归一化处理的数据集作为LSTM(long short-term memory)和XGboost (extreme gradient boosting)的模型输入,分别构建LSTM和XGboost的超短期风电预测模型,在此基础上,采用误差倒数法对LSTM和XGboost的预测数据进行加权构建组合预测模型;最后,以张家口某示范工程风电场实际运行数据验证组合模型的有效性。结果表明,相较于其他4种单一预测模型,组合模型具有更高的预测精度。  相似文献   

4.
针对风电并网问题,综合考虑并网发电误差、时段功率波动和电池荷电状态,提出了一种电池储能补偿发电计划曲线误差及平抑风功率波动的多目标优化控制策略.首先,通过分析风储联合发电特性,建立包含多项考核指标的评价体系,并构建电池储能系统输出功率的多目标优化控制模型;然后,结合NSGA-Ⅱ智能优化算法及模糊综合评价方法对多目标优化控制模型进行求解和决策,实时优化电池储能系统的输出功率指令;最后,基于某风电站的实测发电数据进行对比仿真,验证所提出的多目标优化控制策略能够在有效提高跟踪发电计划曲线的能力、降低风功率频繁波动的前提下,通过优化电池储能系统有功出力及荷电状态来延长储能电池的使用寿命.  相似文献   

5.
随着风电装机容量的持续增长,风力发电的间歇性和随机性对电网造成的不利影响越来越明显.因此,有效的风电功率预测是解决大规模风电并网的关键问题之一.文章提出一种椭圆轨道模型对风电功率进行超短期预测.首先,采用去趋势波动分析法对样本数据进行平滑处理,解决风电功率数据突变的问题;然后,应用椭圆轨道模型对风电功率进行超短期预测.采用湖南某风电厂实际运行的4组数据进行验证,实验结果表明:椭圆轨道模型的预测误差在可接受范围之内,为超短期风电功率预测提供了一种有效方法.  相似文献   

6.
田凯  徐长奎 《应用科技》2015,(2):13-16,28
由于风速变化的随机性,风电场的输出功率波动性较大,导致风电场并网会对电力系统稳定性造成影响。为了克服风电输出的波动性问题,提出一种基于混合储能装置平抑风电功率波动的控制方法。首先,对风电输出波动功率进行分解,针对波动功率的特点选择蓄电池和超级电容作为储能装置;其次,设计储能系统的运行控制方式,使其能与风电场进行快速的功率交换,使得风电场输出功率跟踪发电指令;最后,在MATLAB/SIMULINK环境下进行仿真验证。仿真结果表明该方法能够有效地平抑处理风电场输出波动功率,使得风电场输出功率稳定地跟踪发电指令,蓄电池和超级电容各自发挥优势,延长了蓄电池使用寿命。  相似文献   

7.
为了提高风电功率预测精度,提出了一种基于变分模态分解(VMD)和改进的最小二乘支持向量机(LSSVM)的短期风力发电功率预测新模型。利用VMD将功率历史数据分解成趋势分量、细节分量和随机分量以降低原始数据的复杂性和不平稳性,然后建立IBA-LSSVM预测模型,利用改进蝙蝠算法(IBA)对最小二乘向量机的参数进行优化,并分别对各个子模态进行预测,叠加子模态的预测结果以得到最终的发电功率预测值。对宁夏某风电厂功率预测结果证明了该模型的有效性,通过不同预测模型的对比验证了模型具有较高的预测精度。  相似文献   

8.
针对极端气象条件所产生的异常数据使得预测结果在极端气象情况下存在预测精度低和异常识别错误等问题,提出一种基于对抗生成式网络的风电功率预测方法.该方法基于联合分布KL散度,分析并明确正常数据与异常数据的联合分布,经过不同模式下的对抗训练,生成风电功率数据集,实现多种气象条件下风电功率预测.研究结果表明:本文所采用的对抗生...  相似文献   

9.
徐龙博  汪少勇 《科技资讯》2013,(32):129-129
对风电场进行功率预测是风电大规模并网的必然要求,本文总结研究了风电功率预测系统的政策标准、技术要求,系统构成与预测方法,并对研究应用现状及未来发展趋势进行了探讨。  相似文献   

10.
随着我国风电产业迅速发展,风电并网规模不断扩大,准确预测风电场输出功率是降低风电波动对电网影响、提高电能质量、保证电网稳定运行的有效途径.本文采用箱型分析及热卡填充的方法对数据集中的异常数据进行清洗与重构.采用遗传算法与EEMD分解算法相结合的方式改进BP算法,并且根据不同时间尺度预测结果对比,相对于传统预测模型而言,...  相似文献   

11.
针对短期风电功率预测,将风电输出功率作为时间序列信号,由于其所具有波动性、非平稳性的特点,提出一种基于经验模态分解(EMD)、粒子滤波(PF)和广义回归神经网络(GRNN)的组合预测模型。首先,利用EMD对风电功率序列进行分解,获得各个相对平稳的模态分量;然后,将分解得到高离散度的数据采用PF进行分析处理,低离散度的数据采用GRNN进行分析处理,其中,通过粒子群算法(PSO),根据各低离散度数据自身特点优化GRNN的平滑因数,以进一步提高其预测性能和精度;最后,通过线性叠加各分量的预测结果得到最终风电功率的预测值。结果表明,与PSO-GRNN和单一GRNN结构相比,EMD-PF-GRNN预测模型的预测误差降低了6%左右,预测精度更高,可以更好的预测风电功率。  相似文献   

12.
近年来,中国的风力发电产业高速发展。然而风力发电具有不稳定性,风电功率超短期预测结果的准确性直接影响到电网安全有效的运行。为了进一步提高风电功率超短期预测的精确度,提出了长短期记忆网络-注意力模型(AM-LSTM)风电功率预测模型,该模型将长短期记忆网络(long-term and short-term memory,LSTM)和注意力模型(attention model,AM)相结合, LSTM网络能够处理好风速、风向等时间序列变量与风电功率之间的非线性关系,注意力模型能够优化LSTM网络的权重,从而使预测结果更加准确。采用真实的风电场历史数据进行实验,结果表明:提出的AM-LSTM预测模型能够有效利用多变量时间序列数据进行风电场发电功率的超短期预测,比传统的BP神经网络和LSTM网络具有更精确的预测效果。该预测模型为风电场地电力调度提供了科学参考。  相似文献   

13.
针对短期风电功率预测关键气象因素影响程度的差异和单一模型预测精度不足的问题,提出一种基于近邻成分分析(neighborhood components analysis, NCA)特征加权和Stacking集成预测的短期风电功率预测模型。考虑气象特征对风电功率影响程度不同,利用NCA对气象特征进行加权,将加权特征作为模型输入,强化关键特征的影响程度;在此基础上,构建多个基预测器预测风电功率,并利用结合器将预测结果融合,建立Stacking集成预测模型。算例分析表明,以加权特征作为输入的Stacking集成预测模型具有更高的短期风电功率预测精度。  相似文献   

14.
由于风力发电所利用的近地风能具有波动性、间歇性、低能量密度等特点,对风电场的发电功率进行尽可能准确的预测是风电发展的关键.本文根据某风场的实测数据,采用了时间序列中的自回归移动平均模型(ARMA),对风电功率进行了实时预测;为进一步提高风电功率实时预测的精确性,本文提出了一种基于BP神经网络和ARMA组合模型的预测方法,并对上述实测数据采用该方法进行了实时预测.预测结果表明:组合模型的预测结果与单独的自回归移动平均模型相比,风电功率的实时预测的均方根误差和百分比误差分别减少了4.01%和3.25%,工程中可以采用该组合模型对风电功率进行预测.  相似文献   

15.
随着风电接入电力系统的比例日益增大,准确的风电功率预测显得愈发重要。为此,提出了一种基于模糊熵和完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的短期风电功率预测模型。采用完全集成经验模态分解将原始风电功率序列进行分解,得到一系列不同频率的子序列。再使用模糊熵(Fuzzy Entropy,FE)算法识别各频率分量特征,将子序列分量分为高、中频分量类和趋势项。趋势项为低频分量,具有较为平稳,波动性小的特点,采用麻雀算法(sparrowSsearch algorithm,SSA)优化支持向量回归(support vector regression,SVR)进行预测;高、中频分量的波动性大且特点较为复杂,则采用SSA优化长短期记忆神经网络(Long Short-Term Memory,LSTM),同时引入注意力机制(Attention Mechanism,AM)对重要信息进行更好的权值分配。最后,经过实验结果分析表明,该模型具有更高的风电功率预测精度。  相似文献   

16.
采用小波神经网络方法对风电功率进行了预测,并用超前相位调节法对结果进行矫正。比较了预测前后的矫正效果,结果表明,超前校正法能够提高风电功率的预测精度,并在一定程度上解决了时间序列分析法的预测时延问题,对电力系统的安全稳定经济运行以及提高运行效益具有重要意义。  相似文献   

17.
为了提高风电功率预测精度,提出了一种完全集成经验模态分解(complete ensemble empirical mode decomposition adaptive noise, CEEMDAN)、极限学习机(extreme learning machine, ELM)和改进天牛须搜索算法(improved beetle antennae search algorithm, IBAS)的组合预测模型来预测风电功率。引入动态惯性权重改进天牛的位置更新方式,提高天牛须搜索算法的寻优能力。在预测过程中,首先通过CEEMDAN对原始风电功率数据进行预处理,将非平稳信号分解为一组按照频率和振幅大小排列的序列分量,减少数据波动带来的预测误差。然后利用IBAS优化ELM构建预测模型,分别预测每个序列分量,最后叠加每个序列分量的预测值得到最终预测值。仿真结果表明,与其他预测模型相比,本预测模型预测精度最高,评价指标平均绝对误差(mean absolute error, MAE)、均方根误差(root mean square error, RMSE)、平均绝对百分比误差(mean absolute ...  相似文献   

18.
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMDWNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测.  相似文献   

19.
一种考虑时空分布特性的区域风电功率预测方法   总被引:3,自引:0,他引:3  
为了有效解决风电场数据丢失时直接相加法无法进行区域风电功率预测的问题,提出了一种考虑时空分布特性的区域风电功率预测方法.为降低模型的复杂性,根据风电场及风能信息对子区域进行具体分析.在此基础上,利用相关系数法,选择风电场出力与子区域出力间相关系数绝对值大的风场为基准风电场.以所选基准风电场预测功率为输入,利用神经网络方法,直接预测各子区域功率,整个区域预测结果为各子区域预测值之和.算例结果表明:利用相关系数法选择基准风电场无需大量历史数据支撑,原理简单易于实现;模型与风电场所采用的预测系统无关,易于工程推广应用;模型无需考虑非基准风电场功率预测情况,成本更低、效益更高;采用该模型后子区域预测误差比直接相加的方法降低了5%,整个区域预测误差仅为20.8%.  相似文献   

20.
为提高风电功率预测的准确性,提出了一种基于数据特征提取和麻雀算法优化双向长短期记忆网络(sparrow search algorithm optimised bi-directional long and short-term memory network,SSA-BiLSTM)短期风电功率预测模型。首先根据皮尔逊相关系数(Pearson correlation coefficient,PCC)分析风电数据中各影响因素与风电功率之间的相关性,根据计算结果将功率无关的因素去除。然后,采用自适应噪声完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将原始风电功率序列进行分解,得到一系列子序列分量。再将所有子序列输入麻雀算法(sparrow search algorithm,SSA)优化的双向长短期记忆(bi-directional long short-term memory,BiLSTM)模型中进行预测,根据所得预测值对风速序列进行修正。将修正所得的风速序列与风电功率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号