首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用微波辐射法改性β分子筛,并将改性后的分子筛(Hβ)用于催化乙苯与苯酐一步法合成乙基蒽醌,探究了Hβ分子筛的再生及反应混合物的分离提纯方法.结果表明:改性β分子筛的最适宜条件为微波辐射加热功率390W,加热时间15min,干燥功率325W,干燥时间20min,氢交换次数为一次;分子筛先采用微波干燥,再于550℃焙烧5h后催化活性最好,一次再生后催化性能可恢复到新分子筛的92%;产物分离提纯过程中先采用石油醚将产物和未反应的苯酐分离,再用异丙醇进行重结晶效果最好,纯度可超过99%,回收率达到92%.  相似文献   

2.
以 Bi(NO3)3和 AlCl3为原料,采用共沉淀法制备了固体酸催化剂 SO42-/Bi2O3-Al2O3.探讨了SO42-/Bi2O3-Al2O3催化水合肼还原硝基苯的催化活性.结果表明:催化剂中n(Bi):n(Al)=1:15,以10%的(NH4)2SO4浸渍所得的催化剂具有较高活性.红外光谱表明,催化剂中存在B酸中心,能有效地提高催化剂的性能.此还原方法反应条件温和,催化剂制备简单  相似文献   

3.
将Ce、Zr和Mn的硝酸盐溶液与双沉淀剂(NH4HCO3和NH3·H2O)并流共沉淀,制得Ce-Zr-Mn-O载体,然后用等体积浸渍法分别负载上Cu和Mn,制得Cu/Ce-Zr-Mn-O催化剂,然后考察该催化剂对CO和NO的催化转化性能,并借助X射线衍射(XRD)和扫描电子显微镜(SEM)等方法研究催化剂活性与结构的关系.结果表明:Cu0.07/Ce0.2Zr0.8Mn0.05O2具有良好的催化性能,CO和NO的起燃温度T50(转化率达到50%时的温度)都较低,分别为88℃和223℃;当温度达到350℃时,CO和NO均能完全转化.  相似文献   

4.
以Bi(NO3)3和AlCl3为原料,采用共沉淀法制备了固体酸催化剂SO42-/Bi2O3-Al2O3。探讨了SO42-/Bi2O3-Al2O3催化水合肼还原硝基苯的催化活性。结果表明:催化剂中n(Bi):n(Al)=1:15,以10%的(NH4)2SO4浸渍所得的催化剂具有较高活性。红外光谱表明,催化剂中存在B酸中心,能有效地提高催化剂的性能。此还原方法反应条件温和,催化剂制备简单。  相似文献   

5.
硝酸铈与丙氨酸配位反应的热化学研究   总被引:4,自引:0,他引:4  
用新型的具有恒温环境的反应热量计,以溶解量热法,分别测定了25℃时(Ce(NO3)3·6H2O 4Ala)和Ce(Ala)4(NO3)3·H2O在2 mol·L-1HCl溶剂中的溶解焓.通过设计的热化学循环,得到了六水硝酸铈与丙氨酸配位反应的反应焓△rHm=-22.268 kJ·mol-1,并计算出配合物Ce(Ala)4(NO3)3·H2O在298.2 K时的标准生成焓△fHθm[Ce(Ala)4(NO3)3·H2O,s,298.2 K]=-3 928.5 kJ·mol-1.  相似文献   

6.
以Y(NO3)3·6H2O、Al( NO3)3·9H2O、Nd(NO3)3·6H2O、NH4HCO3为原料,以乙醇为分散剂,采用共沉淀法制备Nd:YAG前躯体,将前躯体在不同温度下煅烧得到Nd:YAG粉体.分别采用红外光谱仪(FT-IR)、热重/差热分析仪(TG/DSC)、X射线衍射仪(XRD)、透射电子显微镜(TEM...  相似文献   

7.
采用共沉淀法制备Fe2O3—SiO2混合氧化物前驱体,并对其进行水热改性处理,经浸渍(NH4)2S2O8溶液后再焙烧得S2O8^2-/Fe2O3—SiO2固体酸催化剂。研究了制备条件对催化活性的影响,用乙酸/丁醇酯化反应评估该固体酸的催化性能。实验结果显示,最佳工艺条件为,n(Fe):n(Si)=1:4,150℃水压热处理1h,在0.5mol.L^-1的(NH4)2S2O8溶液中浸渍6h,500℃焙烧3h,在此条件下乙酸的转化率可达94.11%。  相似文献   

8.
稀土固体超强酸Ce(Ⅳ)-SO_4~(2-)/TiO_2催化合成柠檬酸三丁酯   总被引:1,自引:0,他引:1  
采用浸渍法制备了负载稀土的固体超强酸Ce(Ⅳ)-SO4 2-/TiO2催化剂,以柠檬酸三丁酯的合成为探针反应进行了单因素测试.实验结果表明,当Ce(SO4)2·4H2O的质量分数(占浸渍液)为2.0%,H2S04浸渍液浓度为0.6mol/L,酸醇摩尔比1:4,催化剂用量为1.2 g,反应时间为3.0h时,酯化率为86.5%.重复使用5次后,其酯化率仍达78.7%.  相似文献   

9.
以Na12[Bi2W22O74(OH)2]·44H2O、Ce Cl3·7H2O、Mn SO4·H2O和酒石酸钠Na2C4H4O6·2H2O为原料,采用常规水溶液合成方法制备了一例新颖的二维多酸化合物Na3H7[(Bi W9O33)2Mn4(H2O)10]·53H2O.通过单晶X射线衍射、红外光谱和热重对标题化合物进行了表征.  相似文献   

10.
为了实际考察SNOX方法的工艺条件对烟气中NO○x及SO2的催化脱除效果,针对NO○x的催化还原反应,采用浸渍法制备CuO/γ-Al2O3催化剂,考察了反应温度、空间速度、n(NH3)/n(NO○x)、SO2浓度对NO○x转化率的影响;针对SO2催化氧化反应,采用筛选出的V2O5催化剂,实验考察了反应温度、空间速度、n(O2)/n(SO2)对SO2转化率的影响.以实验研究成果为依据,进行了反应动力学计算.研究结果表明,在实验确定的最佳工艺条件下,NO○x还原率可达87.5%,经两级氧化SO2的转化率达94.3%.  相似文献   

11.
采用共沉淀法制备Fe2O3-SiO2 混合氧化物前驱体 ,并对其进行水热改性处理 ,经浸渍(NH4)2S2O8 溶液后再焙烧得S2O82 -/Fe2O3-SiO2 固体酸催化剂。研究了制备条件对催化活性的影响 ,用乙酸/丁醇酯化反应评估该固体酸的催化性能。实验结果显示 ,最佳工艺条件为,n(Fe):n(Si)=1:4 ,150℃水压热处理1h ,在0.5mol·L-1 的(NH4)2S2O8 溶液中浸渍6h ,500℃焙烧3h ,在此条件下乙酸的转化率可达94.11 %。  相似文献   

12.
NH4型分子筛催化剂NO低温还原反应和表征   总被引:1,自引:0,他引:1  
考察了NH4 型 β ,ZSM 5型分子筛催化剂上 ,NO在富氧条件下的低温 (30~ 2 5 0℃ )催化还原行为 .NH+ 4 TPDC和NH3 TPD表征结果与催化剂的DeNOx 反应结果有很好的相关性 .由于NH4 + 离子的消耗引起的催化剂失活 ,可以通过在载气中在线补充NH3 气 ,催化剂经离子交换或NH3 ·H2 O浸渍而恢复 ,提出了气相间隙喷氨操作的可行性  相似文献   

13.
采用共沉淀法制备Fe2O3-SiO2混合氧化物前驱体,并对其进行水热改性处理,经浸渍(NH4)2S3O8溶液后再焙烧得S2O2-8/Fe2O3-SiO2固体酸催化剂.研究了制备条件对催化活性的影响,用乙酸/丁醇酯化反应评估该固体酸的催化性能.实验结果显示,最佳工艺条件为,n(Fe)∶n(Si)=1∶4,150℃水压热处理1h,在0.5 mol·L-1的(NH4)2S2O8溶液中浸渍6 h,500℃焙烧3 h,在此条件下乙酸的转化率可达94.11%.  相似文献   

14.
柠檬酸三丁酯的新合成法   总被引:4,自引:0,他引:4  
SO2 -4 /Zr O2 、Fe Cl3· 6H2 O、NH4 Fe(SO4 ) 2 · 1 2 H2 O三种催化剂对柠檬酸与正丁醇酯化反应的催化性能 ,结果表明 ,Fe Cl3· 6H2 O催化活性最高。通过系统地研究Fe Cl3· 6H2 O催化合成柠檬酸三丁酯的工艺条件 ,确定其适合的工艺流程为 :酸醇比 1∶1 2 .5,催化剂用量为 3% ,反应温度为 1 2 5℃ ,反应时间为 3h,这样酯化率可达 95%以上。  相似文献   

15.
纳米Cu/γ-Al_2O_3催化剂制备与选择催化还原NO性能   总被引:1,自引:0,他引:1  
采用NH4Al(SO4)2、NH4HCO3和NH3.H2O为原料沉淀制备γ-Al2O3,然后浸渍负载活性组分Cu2+,制成纳米Cu/γ-Al2O3催化剂,并考察其催化性能.SEM测试结果表明:制得的纳米Cu/γ-Al2O3催化剂粒径均小于100 nm.活性测试结果表明:在pH值为8.5时制备的γ-Al2O3负载上3%Cu2+的纳米Cu/γ-Al2O3催化剂性能最佳,在275℃时能使NO的转化率达到82.3%,与普通Cu/γ-Al2O3催化剂相比较,最佳活性温度降低了25℃,NO最大转化率提高了31.8%.  相似文献   

16.
以Bi(NO3)3·5H2O、Fe(NO3)3·9H2O和La(NO3)3·6H2O为原料,乙二醇甲醚[2-methoxyethanol,C3H8O2]为溶剂,冰乙酸[C2H4O2]为络合剂,采用溶胶凝胶氧化铝模板法在600℃退火制备了Bi0·85La0·15FeO3(BLFO)纳米线.利用X射线(XRD)和扫描电子显微镜(SEM)研究了产物的物相和形貌.结果表明合成的产物为BLFO纳米线,直径约100-200 nm,长度约5-50μm.不同退火温度XRD研究表明600℃制备了纯相BLFO,低于文献报道的铁酸铋纳米结构合成温度.  相似文献   

17.
Cu/Ce-Zr-La/γ-Al_2O_3的制备及其三效催化性能   总被引:1,自引:0,他引:1  
将AlNH4(SO4)2溶液滴入到NH4HCO3和PEG6000的混合溶液中,用沉淀法制备γ-Al2O3载体.然后用等体积浸渍法分别负载上Ce-Zr-La以及活性组分Cu,制备催化剂Cu/Ce-Zr-La/γ-Al2O3.考察该催化剂的三效催化性能,并借助扫描电子显微镜(SEM)、X-射线衍射(XRD)、热重分析(TG)等方法研究催化剂活性与结构的关系.实验结果表明:Cu/Ce-Zr-La/γ-Al2O3具有良好的三效催化性能,NO、CO和C3H6的起燃温度都较低,分别为250℃、150℃和300℃;CeO2-ZrO2对载体γ-Al2O3和活性组分Cu具有稳定作用,避免了CuAl2O4尖晶石相的生成;La能够显著提高催化剂的热稳定性.  相似文献   

18.
采用Mg(NO3)2·4H2O,Ga(NO3)3·6H2O,Zn(NO3)2·6H2O,CO(NH2)2,NH4NO3及Co(NO3)2·6H2O等为原料,于500℃利用低温燃烧技术成功获得了一系列钴掺杂镓酸镁锌复合尖晶石材料。采用X-射线衍射仪(XRD)、透射电镜(TEM)、F-4500型荧光分光光度计对样品进行分析表征。结果表明,所得产品不是MgGa2O4和ZnGa2O4的简单混合物,而是一种新型的固溶体材料。ZnxMg1-xGa2O4:Co2+(0≤x≤1.0)晶体的晶格常数与掺杂比例x之间存在比较好的线性关系。合成的晶体结晶度高,排列较规整。发射光谱的形状和位置分析表明,可见光区670 nm附近的强发射峰源于四面体位中Co2+的4T1(4P)→4A2(4F)能级跃迁;近红外区的弱发射峰源于四面体位中Co2+的4T1(4P)→4T2(4F)能级跃迁。  相似文献   

19.
以1,10-菲哕啉-5,6-二酮为配体与(NH4)2Fe(SO4)2·6H2O在水溶液中制备了一种墨绿色粉末状配合物,采用化学分析方法、紫外可见分光光度法、热重分析和原子吸收光谱法对标题配合物进行了溶解性和结构研究.结果表明,1,10-菲哕啉-5,6-二酮与(NH4)2Fe(SO4)2·6H2O容易发生配位反应,形成的配合物难溶于水、四氢呋喃和乙醇,并初步推测出其组成为Fe(C12N2 O2H6)2SO4·H2O.  相似文献   

20.
以LiOH·H2O,NH4H2PO4和V2O5为原料,加入导电碳,用高温固相法合成Li3V2(PO4)3;以LiOH·H2O,NH4H2PO4,NH4VO3为原料,柠檬酸作为还原剂和碳源,用溶胶凝胶法合成Li3V2(PO4)3,并对材料的化学电化学性能进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号