首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

7.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

8.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
考虑持时作用的地震能量表达式   总被引:6,自引:0,他引:6  
由于地震的极度复杂性,目前基于应力法的考虑地震作用的土木工程研究工作相当复杂且误差较大,因此能量法作为一种标量方法应运而生。在评估地震能量强弱时,持时与震级和频率特性一样是一个重要指标,然而目前通用的地震能量表达式没有考虑持时的效应。利用统计方法建立了震级、持时半对数关系表达关系式,与文献提供的数据相比,此方程具有更小的残差和更高的相关系数。地震能量公式经此关系式修正之后,对能量的预测与评估更加准确。本文的结果对于工程抗震、隔震和液化研究具有理论与实际意义。  相似文献   

12.
通过对珠江三角洲地区活动断裂、砂土液化、软土震陷、塌陷地震、滑坡、崩塌和孤立地形和不均匀地基等场地震害分析,预测了珠江三角洲地区未来场地震害的主要形式是砂土液化和软土震陷,同时不可忽视其他震害的影响.利用砂土、软粘土层大量吸收地震能量来防止强震中建筑物的倒塌和破坏将成为场地震害分析的一个新趋势.  相似文献   

13.
为了研究带预冷的双氮膨胀液化工艺的动态特性,在小型撬装液化实验装置基础上建立相应的工艺动态模型,对电磁阀的流量系数进行微调,以适应蒸发器热负荷的变化;对压缩机控制与启动、预冷机组能量调节、LNG节流控制等实验工况进行仿真,并与实验结果进行对比。结果表明:氮气压缩机的控制与启动与实验测试结果一致,验证了压缩机控制动态模型的准确性;预冷机组能量调节受电磁阀流量系数的影响。LNG节流阀串级控制有效克服了温度响应的滞后,提高了控制质量。动态仿真可优化天然气液化工艺设计,指导设备的操作和运行,提高装置的安全性。  相似文献   

14.
带膨胀机的煤层气液化流程计算及热力学分析   总被引:2,自引:0,他引:2  
为了比较不同煤层气液化流程中的损失、能耗的差别,首先对制冷剂中甲烷(CH4)的摩尔分数对能耗的影响进行了优化计算,在此基础上应用流程优化软件和编程手段对2种典型的液化流程方案进行了理论计算,进而对其损失、能耗进行了比较和分析.结果表明:CH4摩尔分数为50%左右时耗功最小,有利于流程的优化;理论上"丙烷预冷的N2-CH4单级膨胀液化循环"的损失和能耗均小于"N2-CH4串联双级膨胀液化循环".  相似文献   

15.
利用玉米秸秆为原料研究其在高压反应釜中的水热法液化过程.结果表明,反应温度为390℃,反应停留时间为15 min左右,升温速率为10℃min-1时,,生物油的得率最高.生物油的热值较高,成分也比较复杂.生物质的水热法液化能获得高能量密度产物,是一种具有良好发展前景的生物质转化技术.  相似文献   

16.
从分析非线性粘弹性体单阶跃应力松弛函数的性质入手,指出内蕴时标对应变历程的依赖关系,从而修正了两阶跃应力松弛的表达式。在八种不同情况下,这些表达式的计算曲线与两阶跃应变试验的实测点都很吻合。  相似文献   

17.
以煤制油项目为例,探索实物期权在不确定条件下专用实物资产投资估价中的具体运用,以提高项目估价的有效性,加快理论向应用转换的进程,并为中国煤制油发展提出合理的政策建议。DCF分析结果显示,财务内部收益率低于行业基准收益率,该项目不可行。但是,DCF法忽略了专用实物资产投资的不可逆性、可等待性和期权性以及未来收益的不确定性,从而导致在不确定条件下对专用实物资产投资估价失真。因此,利用修正后的二项式模型对项目进行了重新估价,研究表明煤制油项目具有较大的等待价值,特别是战争等突变因素发生时,其价值将是巨大的。  相似文献   

18.
论述了土体液化判别的意义和土体液化的必备条件,通过对液化判别公式的分析,探讨了液化判别公式的可靠性,指出了液化判别公式的局限性,提出了应采用理论分析、经验判断等多种方法综合判断粉土液化。  相似文献   

19.
为了给砂土地震液化的数量化研究提供参考,基于多元统计分析理论,建立砂土地震液化判别与液化势分类的Bayes判别分析模型。模型选用震级、地面加速度最大值、标准贯入击数、比贯入阻力、相对密实度、平均粒径和地下水位等7个指标作为判别因子;将砂土液化势分为严重液化、中等液化、轻微液化和未液化4个级别,并作为Bayes判别分析的4个正态总体;以17个砂土实测数据作为训练样本,建立Bayes线性判别函数,以Bayes线性判别函数的最大值对应的总体作为样品所归属的总体;最后将建立的模型对训练样本进行回判,以回代估计误判率对模型进行检验。研究表明,对训练样本的回代误判率为0,对另外20个砂土样本的判别正确率为90%。  相似文献   

20.
在基坑开挖工程中,常常可以利用数值模拟方法计算基坑场地的变形。然而,常规的数值模拟一般没有充分结合经验分析和场地观测数据来计算出较为精确的开挖变形。工程模拟自学法是一种基于神经网络的数值模拟方法,它属于一种可以综合有限元与人工智能的反分析技术。工程模拟自学法能充分发挥神经网络的自适应性、自组织性及学习、联想、容错及抗干扰能力,揭示出历史资料分析和场地测量数据中所蕴含的非线性关系,提炼出更接近土体实际状态的本构模型进行数值分析,改善变形计算精度。工程模拟自学法的具体应用可通过基坑开挖例子说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号