首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
展开型定向战斗部可以最大限度地提高空空导弹的终端能力,对目标实现最大的杀伤效能. 研究了一种可展开结构在爆炸驱动载荷下的瞬态响应,设计实验方案并进行了相应的静爆实验;利用DYNA 3D有限元程序对可展开结构进行三维建模,采用ALE流固耦合算法对炸药爆炸驱动载荷下结构展开过程进行数值模拟;比较实验与数值模拟的结果,验证了所采用的实验方案和相关数值模拟方法的可靠性,并为下一步研究提供支持.  相似文献   

12.
基于真实目标等效结构研究制导杀爆弹毁伤效能评估的应用.针对红外成像和GPS两种制导模式,分析末端弹道特征对于确定弹药研究毁伤效能与引信炸高、制导精度之间的联系.通过分析结果可见,采用红外成像制导模式,炸点随着炸高的提高离瞄准点的距离逐渐变远,破片群难以命中目标;采用GPS制导模式,炸点可通过弹载计算机计算调整炸点于目标上方,破片群向下可命中目标,对目标的毁伤效果较好;所以,弹药的毁伤效能除了与战斗部、引信有关,还与导引头的制导模式相关.通过仿真分析,制导模式对战斗部动爆威力场影响不大,因此在战斗部研制过程中可不考虑弹药的制导模式,而只采用动爆条件下的毁伤幅员对战斗部的毁伤效能进行考核,以优选出最佳战斗部结构和炸高.   相似文献   

13.
线形爆炸成型弹丸(LEFP)战斗部近些年成为研究热点。以一种大长径比LEFP战斗部为研究对象,为了更精确地估算LEFP初速,利用数值模拟技术,对LEFP成型结果以及初速度进行仿真。通过研究LEFP各点初速分布,对格尼公式进行修正,求得适用于估算LEFP初速估算的修正格尼公式。在此基础上,提出符合LEFP战斗部的有效装药模型。通过试验研究,检验LEFP毁伤能力,并对毁伤元初速的试验结果、数值模拟结果、修正型格尼公式计算结果进行对比,验证修正后的格尼公式适用于LEFP战斗部的毁伤元初速估算。  相似文献   

14.
杀爆战斗部对导弹阵地的毁伤效能研究   总被引:1,自引:0,他引:1  
为评价战斗部对目标的毁伤能力,根据防空导弹阵地的功能和结构特性,建立了目标等效模型,确定了破片和冲击波对目标的毁伤判据.利用Monte-Carlo方法建立了导弹战斗部的单发毁伤概率模型,计算分析了终点弹道参数对毁伤概率的影响规律.结果表明,随圆概率偏差(CEP)和爆高的增加,毁伤概率下降.研究结果可为战斗部设计及作战使用提供参考.  相似文献   

15.
采用在成型装药前端加装金属隔栅的方法形成爆炸成型弹丸(EFP)破片模态,利用LS-DYNA程序仿真研究了隔栅对EFP破片成型及侵彻的影响,得到隔栅位置和结构对形成EFP破片速度和飞散情况的影响规律。研究结果表明,隔栅单元格边长为0.2倍装药口径、隔栅与药型罩端部之间的距离为1/12倍装药口径时,形成的EFP破片速度和散布面积较佳。采用优化的隔栅结构进行试验,试验与数值模拟结果吻合较好,说明该文结果可为多模成型装药的进一步研究提供参考。  相似文献   

16.
建立引战配合的数学模型 ,在此基础上介绍防空导弹引战配合数字仿真系统 ,以某防空导弹攻击其典型目标——米格 - 2 1为例 ,对引信、战斗部和目标的作用过程进行动态仿真 ,给出了仿真结果 ,并给出了战斗部破片的动态飞散区域和命中目标的破片分布图形 ,从而直观地显示出引战配合的效果以及对目标的毁伤程度  相似文献   

17.
为了实现破片对高速运动小目标的斜向高效、均匀侵彻,根据爆轰波传播特点和爆炸驱动理论,设计了一种斜向破片式战斗部,以2mm厚Q235钢板为目标借助于数值模拟和试验考察分析了战斗部结构、起爆方式等对破片侵彻能力和散布密度、散布均匀性的影响。结果表明:破片在52.3度斜向角内对2mm厚的Q235的穿透率达96.6%,破片在该方向范围内散布均匀,三点起爆方式更有利于提高破片散布均匀性和速度一致性。  相似文献   

18.
药型罩参数对EFP成型性能影响的灰关联分析   总被引:3,自引:1,他引:2       下载免费PDF全文
为了分析药型罩参数对爆炸成型弹丸(EFP)形成的影响,采用数值模拟方法计算出18种不同方案下EFP成型后的性能参数,基于灰理论对EFP战斗部药型罩参数和成型性能参数进行了灰关联分析,得到了影响EFP性能参数的关联度矩阵,利用关联度矩阵指导了EFP战斗部的药型罩参数选择设计。数值仿真结果表明:影响EFP速度的主要因素依次为药型罩维角、材料密度、壁厚,影响EFP长径比的主要因素依次为药型罩材料密度、锥角、壁厚,而且基于灰关联分析结果设计的40 mm EFP战斗部,可以形成高速且具有良好气动外形的EFP,利于提高战斗部毁伤性能。  相似文献   

19.
为提高防空反导弹药和反轻型装甲目标弹药的毁伤效能,提出了一种新型周向多线性爆炸成型弹丸(MLEFP)战斗部结构。在应用ANSYS/LS-DYNA有限元软件模拟MLEFP战斗部形成过程的基础上,分析了药型罩壁厚对周向MLEFP成型的影响规律。结果表明,在爆炸载荷作用下,新型周向MLEFP战斗部结构能够在4个方向上形成具有一定速度和长度的线性爆炸成型弹丸(LEFP),具有命中精度高、毁伤概率大、后效显著的特点,可以实现从四周进行近距离拦截和引爆来袭导弹、毁伤轻型装甲目标的目的,当药型罩壁厚与装药直径比取为0.05≤δ/D≤0.062时,形成的LEFP速度高、密实度好、毁伤效能好。  相似文献   

20.
基于命中点的巡飞弹引战配合设计   总被引:1,自引:1,他引:0  
针对EFP战斗部的特点,通过建立命中点模型,对巡飞弹的引战配合进行设计.在弹目交会参数和弹体姿态已知的情况下,计算出命中点相对于弹体质心的空间位置,进而判断是否命中目标和确定最佳起爆延时算法.研究结果表明,该起爆延时算法适用于采用EFP战斗部的巡飞类弹药引战配合设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号