首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
油膜调速离合器传动机理研究   总被引:9,自引:0,他引:9  
本文运用流体动力润滑理论分析了油膜调速离合器的传动机理.考虑到油膜调速离合器的特点,计算模型中引入流体的旋转惯性力,对雷诺方程加以修正,并用有限元素法求其数值解.通过联立求解修正的雷诺方程和能量方程,确定流体膜的温度场和相应的压力分布.研究了摩擦片上所开油槽的作用及油槽形状的影响.  相似文献   

2.
粗糙齿面啮合的热弹流润滑分析   总被引:5,自引:0,他引:5  
在王晓力等的基于平均流量模型的广义Reynolds方程的基础上,进一步建立了综合考虑流体的非牛顿特性、可压缩性、齿面粗糙度效应及热效应的线接触混合弹流润滑的广义Reyn-olds方程;并采用多重网格法求解润滑方程组,采用逐列扫描步进法求解温度控制方程,获得了渐开线齿轮传动混合热弹流润滑的完全数值解。对部分算例,分别分析了一对轮齿从入啮到脱啮的整个啮合过程中最大主剪应力和平均油膜厚度的变化规律。计算结果表明,计入齿面的粗糙度效应后,轮齿接触应力显著增大,这必然会对轮齿接触疲劳强度产生重要影响,因此,基于Hertz理论进行齿轮接触疲劳强度设计有失安全性。  相似文献   

3.
内燃机缸套-活塞系统摩擦学与动力学行为耦合分析   总被引:2,自引:0,他引:2  
建立了内燃机缸套—活塞系统油膜润滑与动力学行为的耦合分析模型,并用数值方法对单缸四冲程内燃机进行了仿真分析。在分析中同时考虑了活塞二阶运动和缸体振动对缸套—活塞间油膜润滑的影响。缸体结构振动响应用有限元法来计算,缸套和活塞间的流体润滑计算通过有限差分法求解平均雷诺方程进行,其中考虑了微凸体接触的作用。在考虑缸套—活塞油膜润滑与缸体结构振动、活塞二阶运动耦合作用的情况下,计算出了缸套—活塞间润滑油膜的最小油膜厚度、摩擦力、摩擦功耗等,同时也分析了活塞二阶运动的变化。通过与不考虑缸体振动时的相应结果对比表明:考虑缸体的结构振动后,缸套—活塞间的摩擦力和摩擦功耗减小,油膜厚度、活塞的二阶运动位移及速度增大。  相似文献   

4.
为研究四冲程车用柴油机活塞-缸套摩擦副的动力学及润滑特性,提出了一种新的活塞-缸套摩擦动力学耦合模型.模型中采用绝对节点坐标公式(ANCF)描述活塞-连杆-曲轴多柔体动力系统,采用平均雷诺方程和微凸体接触理论描述混合润滑模型,基于商用软件结合二次开发程序实现仿真计算.对活塞缸套摩擦副的润滑动力学计算分析表明,由于缸内压力和活塞敲击作用,缸套会产生最大值为23.6μm的瞬时变形.与刚体模型相比,考虑部件的弹性变形不仅会使活塞横向位移增加40%,还会使得活塞润滑域出现油膜压力的局部集中.另外,柔体模型的循环平均功耗更小,与刚体模型相比相差17.7%.  相似文献   

5.
考虑金属的热衰退特性及温度、压力和摩滑速度对混合润滑油膜的影响,建立了湿式铜基摩擦副局部接触摩擦因数计算模型,研究了摩滑过程中湿式铜基摩擦副局部接触状态下摩擦因数的变化规律,并通过销-盘摩擦因数测量实验对摩擦因数计算模型进行了验证.研究结果表明:摩擦元件屈曲变形导致摩擦元件间摩擦状态发生变化,在局部接触条件下,接触区摩擦状态随温度升高可分为油膜主导阶段、微凸峰主导阶段、摩擦因数上升阶段和热衰退阶段4个阶段.其中,油膜主导阶段会随摩滑速度的减小而消失.干摩擦状态下,摩滑速度对摩擦因数影响较小.在混合润滑状态下,摩擦因数随摩滑速度增加而下降,且温度越小摩擦因数衰减越显著.局部接触区平均面压较小时,压力对摩擦因数影响较小,当压力超过100 MPa时,接触面压力开始对混合润滑中的油膜主导阶段产生影响,此时摩擦因数随压力升高而增大.   相似文献   

6.
超越离合器的滑动摩擦研究   总被引:1,自引:1,他引:0  
应用改进的等温弹性流体动力润滑模型,研究了脉动无级变速器用超越离合器的滑动摩擦。采用逆解法将雷诺方程、弹性变形、油膜厚度、润滑特性等联立,再用非牛顿流体(流变学)模型计算了摩擦力和牵引系数,并以榆入功率为1.5kw的超越离合器为例讨论了计算结果。  相似文献   

7.
综合运用平均雷诺方程、Christensen随机粗糙峰分布理论、摩擦润滑理论和金属轧制变形理论,建立考虑表面粗糙度特征影响的轧制工作界面混合润滑模型,并采用该模型系统分析基于不同表面粗糙度方向、压下率、轧制界面膜厚比、接触载荷比、界面流体压力和接触面积比等混合润滑摩擦性能参数随润滑油卷吸速度或工作区位置变化的情况。研究结果表明:粗糙度横向分布更有利于润滑性能的提高;在相同表面粗糙度下,随着压下率增大,接触面积比和膜厚比减小;在相同压下率下,膜厚比随工作界面润滑油卷吸速度的增大而增大,而接触载荷比和接触面积比随之减小;工作界面表面粗糙度对界面流体压力分布有较大影响,在表面粗糙度最小处流体压力最小。  相似文献   

8.
为分析局部磨损和空化效应对径向滑动轴承混合润滑性能的影响,基于平均Reynolds方程及JFO空化边界条件建立了计入局部磨损的轴承混合润滑模型,通过数值求解研究了不同磨损深度对轴承油膜厚度分布、平均流体动压力分布、轴心位置和Stribeck曲线的影响。结果表明:局部磨损显著改变了油膜厚度分布和平均流体动压力分布;大磨损深度导致轴心位置改变,偏离原来设计;小磨损深度降低了轴承混合润滑阶段的摩擦系数,且能以更低的速度从混合润滑过渡到流体动压润滑;摩擦系数随着磨损深度的增加而增大。  相似文献   

9.
低速工况下处于混合润滑状态的滑动轴承易因变形或倾斜而发生磨损。为分析轴颈倾斜和磨损对滑动轴承混合润滑特性的影响,建立了计入轴颈倾斜和弹性变形的平均流量方程、G-T接触方程和Archard磨损方程耦合模型,采用有限差分法及超松弛迭代法计算混合润滑状态下轴承特性参数和时变磨损参数,对比了轴颈倾斜前后或磨损前后轴承的润滑性能,并分析粗糙度和边界摩擦系数等因素对各性能参数的影响。搭建摩擦磨损试验台测试了倾斜状态下轴承的润滑特性,验证了理论模型的正确性。理论分析与试验结果表明:重载大偏心时轴承转变为混合润滑状态,轴颈倾斜程度越大,轴承越容易发生混合润滑;轴承倾斜后,压力峰值和接触区域形状发生改变,磨损量因而发生变化,并且磨损深度分布沿轴向或周向倾斜;磨损降低了油膜的动压效应,并且使膜厚比降低,导致油膜压力峰值下降约20%,接触压力峰值降低约90%,承载力最高下降约19.71%;对比磨损前后的轴承形貌发现,轴颈倾斜使得磨损集中于间隙减小的一端。该研究可为实际工程中轴承的设计提供理论依据。  相似文献   

10.
混合弹流润滑系统的建模与摩擦学特性研究   总被引:1,自引:0,他引:1  
为了研究粗糙表面微凸体对混合弹流润滑区摩擦学特性的影响,建立了考虑粗糙表面微凸体的弹流润滑数学模型,可呈现粗糙表面的局部接触状态。通过生成虚拟粗糙表面,分别利用K-E弹塑性接触模型和平均流量雷诺方程计算微凸体接触压力与流体动压力,并且利用快速傅里叶变换技术计算基体的弹性变形量;通过绘制润滑系统的Stribeck曲线,研究了虚拟微凸体、名义载荷、综合粗糙度和微凸体曲率半径对弹流润滑摩擦学特性的影响。结果表明:微凸体的接触压力产生基体弹性变形,使膜厚增加,导致流体动压力减小,微凸体承载比和摩擦因数增大;名义载荷增加导致低速时摩擦因数变小,润滑状态在更低速条件下从边界润滑过渡到混合润滑;综合粗糙度的减小会使Stribeck曲线向左移动;微凸体曲率半径的增大仅使润滑状态加快从边界润滑过渡到混合润滑,然而对从混合区域过渡到弹流区域几乎没有影响。  相似文献   

11.
根据运动过程中的润滑状态,摩擦力一般产生于两个方面,一是黏性流体的剪应力,二是摩擦界面相互接触峰元的剪切作用.针对这两方面因素,基于对涡旋盘在运动过程中处于混合润滑状态的分析,考虑到动涡盘受倾覆力矩的作用,在运转过程中瞬间发生弹性变形,接触面上产生楔形角,建立了动静涡旋盘摩擦模型;运用平均雷诺方程和固体接触理论,推导了摩擦力和摩擦功耗的计算公式,并且应用有限差分法和数值积分法对实际的涡旋盘的摩擦力、摩擦功耗作了计算.  相似文献   

12.
基于多体动力学原理建立了考虑空穴效应和微观弹流润滑效应的连杆大头轴承热弹性流体动力混合润滑的计算模型,提出了穴蚀位置的识别方法,分析了轴承润滑状态并获得了轴承摩擦损失的热量分配方法.结果表明:连杆大头轴承处于混合润滑状态,其粗糙接触发生在上轴瓦顶部的两侧边缘;结合轴心轨迹、润滑油填充率、润滑油填充率的变化率和液动油膜压力变化率可以有效识别穴蚀位置;连杆大头轴承的平均摩擦功率为0.44kW,最大粗糙摩擦功率仅为111.1mW,但对其瞬时摩擦功率的监测并不能判断局部的润滑状态;大头轴承的润滑热量散失以热传导为主要方式.  相似文献   

13.
将Oden等提出的非局部摩擦理论应用于冷挤压过程的流体润滑分析,建立了一种非局部形式的流体润滑模型,应用摄动方法,求得其近似的解析解,并给出了具体算例.应用该模型可以计算冷挤压过程的润滑油膜厚度、油膜压力以及摩擦力的分布。  相似文献   

14.
建立了铁磁性流体自密封润滑滑动轴承静动特性的计算模型,用差分法对轴承的油膜压力方程、温度方程以及轴瓦导热方程进行了联立求解,计算和分析了该模型轴承在不同偏心率和不同长径比等工况下的静动特性。结果表明,在小偏心率和小长径比条件下,采用该模型轴承是可行的,轴承油膜温度比有端泄轴承的相应值高,轴承转速是影响油膜温度的主要因素。设计更加有效合理的密封形式是这种轴承发展和广泛应用的关键  相似文献   

15.
内燃机主轴承弹性流体动力润滑计算分析   总被引:3,自引:0,他引:3  
建立了内燃机主轴承弹性流体动力润滑计算的数学模型和有限元模型.依此模型,对某四缸柴油机的5个主轴承进行了计算,分别算出其在一个工作周期内的油膜压力、油膜厚度、摩擦功耗和轴心轨迹.通过对计算结果的分析表明,第3号主轴承所受到的载荷最小,平均油膜厚度最小,平均油膜压力和摩擦功耗最大.第3号主轴承的润滑状况不佳.应对其进行摩擦学优化设计.  相似文献   

16.
针对具有旋转与轴向2个方向速度的胶印机窜墨棍直齿轮润滑问题,提出一种基于有限长线接触的直齿轮弹性流体动压润滑的数值模拟方法.首先,对模型进行几何分析,并运用有限长弹流理论建立了包含2个方向速度的控制方程,如Reynolds方程、油膜几何方程、润滑油黏度、密度方程和载荷平衡方程;然后,对控制方程进行无量纲化以提高数值计算效率和求解的收敛性;最后,采用有限差分法对具有强非线性的控制方程进行离散化,并采用多重网格法进行数值求解.数值计算结果表明,该方法能有效获得直齿轮不同工况下的润滑油膜压力、膜厚分布,同时还可得到相应的油膜摩擦系数,为研究具有2个方向速度的直齿轮摩擦问题提供了一种有效途径.  相似文献   

17.
为更准确地分析叶片式液压摆动油缸叶片密封面的润滑性能,利用弹性力学平面问题的基本理论建立叶片密封面接触压力数学模型并求得压力在接触面上的分布情况,然后基于瞬态平均Reynolds方程与G-W微凸体接触模型,建立叶片密封面流体动压润滑模型,分析叶片粗糙度对密封面接触压力、油膜厚度分布和摩擦力的影响。结果表明,叶片表面粗糙度增大时,密封面油膜厚度没有明显变化,但摩擦力明显增大。  相似文献   

18.
内燃机缸套-活塞环磨合动力学模型研究   总被引:8,自引:0,他引:8  
文章从混合润滑和磨合动力学的角度出发,基于平均Reynolds方程和G-T微凸体接触模型,研究了表面粗糙度对内燃机缸套-活塞环磨合期内润滑状态的影响,分析了缸套-活塞环摩擦副混合润滑效应;建立了关于内燃机缸套-活塞环摩擦学系统磨合动力学模型。文中还结合EQ6100型汽油机的实例,探讨了各种参数对磨合的影响效果。  相似文献   

19.
文章基于Reynolds方程及颗粒承载模型,引入颗粒直径及浓度等参数,建立一种分析液固二相润滑下活塞环/缸套摩擦副润滑状态的模型,分析了不同颗粒直径和浓度对承载、油膜厚度及摩擦力的影响。当粒径小于最小油膜厚度时,液固二相流体的粘度、膜厚及摩擦力增加;粒径大于膜厚时,颗粒由于承载使油膜压力减小,经粘压效应,降低了二相流体的粘度、膜厚及摩擦力。  相似文献   

20.
针对多片湿式离合器在机械传动过程中产生的热失效问题,研究了工作过程中摩擦副元件的非均匀接触及温度分布。基于多片湿式离合器的工作原理,建立了包括摩擦副间界面比压、冷却润滑、摩擦因数、热变形以及非均匀接触在内的离合器接触特性分析计算模型,并通过动态转矩测量、摩擦副元件测温、静态比压台架试验等验证理论模型完成对接触应力和径向温度分布研究的适用性,同时给出基于径向温度梯度的实时离合器摩擦副热失效判定方法。理论及试验结果表明,在花键力的作用下,多片湿式离合器摩擦界面名义接触比压随远离活塞端逐渐衰减;润滑流量对离合器散热效果显著,随着流量增加,冷却效果收益逐渐减小;即使对于良好磨合的摩擦副元件,其静态比压不均匀分布仍非常明显,摩擦副元件静态非均匀接触使得接触表面压力分布极不规则,存在局部高压区。局部高压区承压超过平均接触比压的4~6倍;摩擦副元件径向温度梯度热变形具有密切的相关性,对于2 mm厚度的钢片,当内外径温差超过100~120℃时,对偶钢片翘曲变形较为明显,易引起离合器工作失效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号