首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Olendorf R  Rodd FH  Punzalan D  Houde AE  Hurt C  Reznick DN  Hughes KA 《Nature》2006,441(7093):633-636
The maintenance of genetic variation in traits under natural selection is a long-standing paradox in evolutionary biology. Of the processes capable of maintaining variation, negative frequency-dependent selection (where rare types are favoured by selection) is the most powerful, at least in theory; however, few experimental studies have confirmed that this process operates in nature. One of the most extreme, unexplained genetic polymorphisms is seen in the colour patterns of male guppies (Poecilia reticulata). Here we manipulated the frequencies of males with different colour patterns in three natural populations to estimate survival rates, and found that rare phenotypes had a highly significant survival advantage compared to common phenotypes. Evidence from humans and other species implicates frequency-dependent survival in the maintenance of molecular, morphological and health-related polymorphisms. As a controlled manipulation in nature, this study provides unequivocal support for frequency-dependent survival--an evolutionary process capable of maintaining extreme polymorphism.  相似文献   

2.
Analysis of an evolutionary species-area relationship   总被引:9,自引:0,他引:9  
Losos JB  Schluter D 《Nature》2000,408(6814):847-850
Large islands typically have more species than comparable smaller islands. Ecological theories, the most influential being the equilibrium theory of island biogeography, explain the species-area relationship as the outcome of the effect of area on immigration and extinction rates. However, these theories do not apply to taxa on land masses, including continents and large islands, that generate most of their species in situ. In this case, species-area relationships should be driven by higher speciation rates in larger areas, a theory that has never been quantitatively tested. Here we show that Anolis lizards on Caribbean islands meet several expectations of the evolutionary theory. Within-island speciation exceeds immigration as a source of new species on all islands larger than 3,000 km2, whereas speciation is rare on smaller islands. Above this threshold island size, the rate of species proliferation increases with island area, a process that results principally from the positive effects of area on speciation rate. Also as expected, the slope of the species-area relationship jumps sharply above the threshold. Although Anolis lizards have been present on large Caribbean islands for over 30 million years, there are indications that the current number of species still falls below the speciation-extinction equilibrium.  相似文献   

3.
The origin of MHC class II gene polymorphism within the genus Mus   总被引:12,自引:0,他引:12  
The I region of the major histocompatibility complex (MHC) of the mouse (H-2) contains a tightly-linked cluster of highly polymorphic genes (class II MHC genes) which control immune responsiveness. Speculation on the origin of this polymorphism, which is believed to be essential for the function of the class II proteins in immune responses to disease, has given rise to two hypotheses. The first is that hypermutational mechanisms (gene conversion or segmental exchange) promote the rapid generation of diversity in MHC genes. The alternative is that polymorphism has arisen from the steady accumulation of mutations over long evolutionary periods, and multiple specific alleles have survived speciation (trans-species evolution). We have looked for evidence of 'segmental exchange' and/or 'trans-species evolution' in the class II genes of the genus Mus by molecular genetic analysis of I-A beta alleles. The results indicate that greater than 90% (28 out of 31) of the alleles examined can be organized into two evolutionary groups both on the basis of restriction site polymorphisms and by the presence or absence of a short interspersed nucleotide element (SINE). Using this SINE sequence as an evolutionary tag, we demonstrate that I-A beta alleles in these two evolutionary groups diverged at least three million years ago and have survived the speciation events leading to several modern Mus species. Nucleotide sequence comparisons of eight Mus m. domesticus I-A beta alleles representing all three evolutionary groups indicate that most of the divergence in exon sequences is due to the steady accumulation of mutations that are maintained independently in the different alleles. But segmental exchanges between alleles from different evolutionary groups have also played a role in the diversification of beta 1 exons.  相似文献   

4.
Speciation is generally regarded to result from the splitting of a single lineage. An alternative is hybrid speciation, considered to be extremely rare, in which two distinct lineages contribute genes to a daughter species. Here we show that a hybrid trait in an animal species can directly cause reproductive isolation. The butterfly species Heliconius heurippa is known to have an intermediate morphology and a hybrid genome, and we have recreated its intermediate wing colour and pattern through laboratory crosses between H. melpomene, H. cydno and their F1 hybrids. We then used mate preference experiments to show that the phenotype of H. heurippa reproductively isolates it from both parental species. There is strong assortative mating between all three species, and in H. heurippa the wing pattern and colour elements derived from H. melpomene and H. cydno are both critical for mate recognition by males.  相似文献   

5.
Speciation in animals is almost always envisioned as the split of an existing lineage into an ancestral and a derived species. An alternative speciation route is homoploid hybrid speciation in which two ancestral taxa give rise to a third, derived, species by hybridization without a change in chromosome number. Although theoretically possible it has been regarded as rare and hence of little importance in animals. On the basis of molecular and chromosomal evidence, hybridization is the best explanation for the origin of a handful of extant diploid bisexual animal taxa. Here we report the first case in which hybridization between two host-specific animals (tephritid fruitflies) is clearly associated with the shift to a new resource. Such a hybrid host shift presents an ecologically robust scenario for animal hybrid speciation because it offers a potential mechanism for reproductive isolation through differential adaptation to a new ecological niche. The necessary conditions for this mechanism of speciation are common in parasitic animals, which represent much of animal diversity. The frequency of homoploid hybrid speciation in animals may therefore be higher than previously assumed.  相似文献   

6.
MHC polymorphism pre-dating speciation   总被引:24,自引:0,他引:24  
F Figueroa  E Günther  J Klein 《Nature》1988,335(6187):265-267
Two features distinguish the polymorphism of the major histocompatibility complex (MHC) loci from that of other loci: its high diversity and the large genetic distance between MHC alleles. More than 100 alleles exist in natural populations in the mouse at each of the functional class I and class II alleles, all alleles occurring at frequencies that cannot be explained by recurrent mutations. Some of the alleles differ by approximately 70 nucleotides in the coding region alone and some of the products of the allelic genes differ by more than 50 amino acids. It has generally been assumed that these differences accumulated after species inception. Here, we present evidence for an alternative explanation of the origin of MHC polymorphism: a large part of the MHC polymorphism pre-dates speciation and is passed on from species to species. We describe allelic differences that must have arisen before the separation of mice and rats from a common ancestor more than 10 million years ago.  相似文献   

7.
E D Brodie 《Nature》1989,342(6249):542-543
The genetic coupling of morphology and behaviour means that the evolution of the two types of traits will not be independent: changes in behaviour will result in changes in morphology and vice versa. This might explain nonadaptive differences in morphology through indirect selection on correlated characters of other categories. Genetic correlations between morphology and behaviour are also the basis for some models of sympatric speciation and of the stability of polymorphisms. Morphology and behaviour are often correlated in nature and a genetic basis for such couplings has been demonstrated. I present here evidence that colour pattern and antipredator behaviour are genetically coupled in natural populations of the garter snake Thamnophis ordinoides. Similar phenotypic correlations between pattern and behaviour exist among species of North American snakes, indicating that selection for particular combinations of traits may help to maintain genetic covariances and colour polymorphism in Thamnophis ordinoides.  相似文献   

8.
从研究种类和研究内容综述了双翅目蝇类的分子系统学研究进展,包括种群遗传变异及进化、种上阶元的系统发育分析、种及种下阶元的分类鉴定及分子进化4个方面内容.  相似文献   

9.
Fay JC  Wyckoff GJ  Wu CI 《Nature》2002,415(6875):1024-1026
Although positive selection has been detected in many genes, its overall contribution to protein evolution is debatable. If the bulk of molecular evolution is neutral, then the ratio of amino-acid (A) to synonymous (S) polymorphism should, on average, equal that of divergence. A comparison of the A/S ratio of polymorphism in Drosophila melanogaster with that of divergence from Drosophila simulans shows that the A/S ratio of divergence is twice as high---a difference that is often attributed to positive selection. But an increase in selective constraint owing to an increase in effective population size could also explain this observation, and, if so, all genes should be affected similarly. Here we show that the difference between polymorphism and divergence is limited to only a fraction of the genes, which are also evolving more rapidly, and this implies that positive selection is responsible. A higher A/S ratio of divergence than of polymorphism is also observed in other species, which suggests a rate of adaptive evolution that is far higher than permitted by the neutral theory of molecular evolution.  相似文献   

10.
The molecular clock runs more slowly in man than in apes and monkeys   总被引:17,自引:0,他引:17  
W H Li  M Tanimura 《Nature》1987,326(6108):93-96
The molecular clock hypothesis postulates that the rate of molecular evolution is approximately constant over time. Although this hypothesis has been highly controversial in the past, it is now widely accepted. The assumption of rate constancy has often been taken as a basis for reconstructing the phylogenetic relationships among organisms or genes and for dating evolutionary events. Further, it has been taken as strong support for the neutral mutation hypothesis, which postulates that the majority of molecular changes in evolution are due to neutral or nearly neutral mutations. For these reasons, the validity of the rate constancy assumption is a vital issue in molecular evolution. Recent studies using DNA sequence data have raised serious doubts about the hypothesis. These studies provided support for the suggestion made from immunological distance and protein sequence data that a rate slowdown has occurred in hominoid evolution, and showed, in agreement with DNA hybridization studies, that rates of nucleotide substitution are significantly higher in rodents than in man. Here, rates of nucleotide substitution in rodents are estimated to be 4-10 times higher than those in higher primates and 2-4 times higher than those in artiodactyls. Further, this study provides strong evidence for the hominoid slowdown hypothesis and suggests a further rate-slowdown in hominoid evolution. Our results suggest that the variation in rate among mammals is primarily due to differences in generation time rather than changes in DNA repair mechanisms. We also propose a method for estimating the divergence times between species when the rate constancy assumption is violated.  相似文献   

11.
The reinforcement model of evolution argues that natural selection enhances pre-zygotic isolation between divergent populations or species by selecting against unfit hybrids or costly interspecific matings. Reinforcement is distinguished from other models that consider the formation of reproductive isolation to be a by-product of divergent evolution. Although theory has shown that reinforcement is a possible mechanism that can lead to speciation, empirical evidence has been sufficiently scarce to raise doubts about the importance of reinforcement in nature. Agrodiaetus butterflies (Lepidoptera: Lycaenidae) exhibit unusual variability in chromosome number. Whereas their genitalia and other morphological characteristics are largely uniform, different species vary considerably in male wing colour, and provide a model system to study the role of reinforcement in speciation. Using comparative phylogenetic methods, we show that the sympatric distribution of 15 relatively young sister taxa of Agrodiaetus strongly correlates with differences in male wing colour, and that this pattern is most likely the result of reinforcement. We find little evidence supporting sympatric speciation: rather, in Agrodiaetus, karyotypic changes accumulate gradually in allopatry, prompting reinforcement when karyotypically divergent races come into contact.  相似文献   

12.
Divergent sexual selection enhances reproductive isolation in sticklebacks   总被引:20,自引:0,他引:20  
Boughman JW 《Nature》2001,411(6840):944-948
Sexual selection may facilitate speciation because it can cause rapid evolutionary diversification of male mating signals and female preferences. Divergence in these traits can then contribute to reproductive isolation. The sensory drive hypothesis predicts that three mechanisms underlie divergence in sexually selected traits: (1) habitat-specific transmission of male signals; (2) adaptation of female perceptual sensitivity to local ecological conditions; and (3) matching of male signals to female perceptual sensitivity. I test these mechanisms in threespine sticklebacks (Gasterosteus spp.) that live in different light environments. Here I show that female perceptual sensitivity to red light varies with the extent of redshift in the light environment, and contributes to divergent preferences. Male nuptial colour varies with environment and is tuned to female perceptual sensitivity. The extent of divergence among populations in both male signal colour and female preference for red is correlated with the extent of reproductive isolation in these recently diverged species. These results demonstrate that divergent sexual selection generated by sensory drive contributes to speciation.  相似文献   

13.
Cadena CD  Ricklefs RE  Jiménez I  Bermingham E 《Nature》2005,438(7064):E1-2; discussion E2
Emerson and Kolm show that the proportion of species endemic to an island is positively related to its species richness and, assuming that endemism indexes speciation rate, they infer that greater species diversity accelerates diversification. Here we demonstrate that the same correlation between species richness and percentage endemism can arise even if within-island speciation is negligible, particularly when both endemism and species richness depend on attributes of islands (such as area) that influence the average age of resident populations. Island biogeography theory indicates that, where the average time to extinction is relatively long, diversity increases through colonization, irrespective of whether new species are formed; at the same time, islands on which populations persist for longer accumulate more endemic species as local populations differentiate and populations on neighbouring islands become extinct. We therefore suggest that species richness and endemism are correlated fortuitously owing to their mutual dependence on the life spans of populations on islands, which is unrelated to speciation itself.  相似文献   

14.
Genetic variation of human senses within the normal range probably exists but usually cannot be investigated in detail for lack of appropriate methods. The study of subtle perceptual differences in red-green colour vision is feasible since both photopigment genotypes and psychophysical phenotypes can be assessed by sophisticated techniques. Red-green colour vision in humans is mediated by two different visual pigments: red (long-wavelength sensitive) and green (middle-wavelength sensitive). The apoproteins of these highly homologous photopigments are encoded by genes on the X chromosome. Colour matches of males with normal colour vision fall into two main groups that appear to be transmitted by X-linked inheritance. This difference in colour matching is likely to reflect small variations in the absorption maxima of visual pigments, suggesting the presence of two common variants of the red and/or green visual pigments that differ in spectral positioning. We report that a common single amino-acid polymorphism (62% Ser, 38% Ala) at residue 180 of the X-linked red visual pigment explains the finding of two major groups in the distribution of colour matching among males with normal colour vision.  相似文献   

15.
Venditti C  Meade A  Pagel M 《Nature》2011,479(7373):393-396
The radiation of the mammals provides a 165-million-year test case for evolutionary theories of how species occupy and then fill ecological niches. It is widely assumed that species often diverge rapidly early in their evolution, and that this is followed by a longer, drawn-out period of slower evolutionary fine-tuning as natural selection fits organisms into an increasingly occupied niche space. But recent studies have hinted that the process may not be so simple. Here we apply statistical methods that automatically detect temporal shifts in the rate of evolution through time to a comprehensive mammalian phylogeny and data set of body sizes of 3,185 extant species. Unexpectedly, the majority of mammal species, including two of the most speciose orders (Rodentia and Chiroptera), have no history of substantial and sustained increases in the rates of evolution. Instead, a subset of the mammals has experienced an explosive increase (between 10- and 52-fold) in the rate of evolution along the single branch leading to the common ancestor of their monophyletic group (for example Chiroptera), followed by a quick return to lower or background levels. The remaining species are a taxonomically diverse assemblage showing a significant, sustained increase or decrease in their rates of evolution. These results necessarily decouple morphological diversification from speciation and suggest that the processes that give rise to the morphological diversity of a class of animals are far more free to vary than previously considered. Niches do not seem to fill up, and diversity seems to arise whenever, wherever and at whatever rate it is advantageous.  相似文献   

16.
On the origin of species by sympatric speciation.   总被引:49,自引:0,他引:49  
U Dieckmann  M Doebeli 《Nature》1999,400(6742):354-357
Understanding speciation is a fundamental biological problem. It is believed that many species originated through allopatric divergence, where new species arise from geographically isolated populations of the same ancestral species. In contrast, the possibility of sympatric speciation (in which new species arise without geographical isolation) has often been dismissed, partly because of theoretical difficulties. Most previous models analysing sympatric speciation concentrated on particular aspects of the problem while neglecting others. Here we present a model that integrates a novel combination of different features and show that sympatric speciation is a likely outcome of competition for resources. We use multilocus genetics to describe sexual reproduction in an individual-based model, and we consider the evolution of assortative mating (where individuals mate preferentially with like individuals) depending either on an ecological character affecting resource use or on a selectively neutral marker trait. In both cases, evolution of assortative mating often leads to reproductive isolation between ecologically diverging subpopulations. When assortative mating depends on a marker trait, and is therefore not directly linked to resource competition, speciation occurs when genetic drift breaks the linkage equilibrium between the marker and the ecological trait. Our theory conforms well with mounting empirical evidence for the sympatric origin of many species.  相似文献   

17.
采用湿法硝解法对黄芩样品进行预处理,利用电感耦合等离子体质谱法(ICP-MS)测定了河南及甘肃2个不同产地的黄芩样品中的28种人体必需或有害的金属元素,结果表明黄芩中含有多种金属元素,不同产地黄芩中金属元素种类基本相同,不同金属元素含量差异较大,变化范围在0.1μg.g-1(Se)~5 277μg.g-1(Mg)(河南产黄芩).进一步以溶出率为指标对黄芩样品中金属元素初级形态进行了分析,结果表明不同金属元素的溶出率不同,多数在30%以下,但多种金属元素的可溶态在85%以上,说明金属元素在黄芩中可能与其他有机化合物成分形成配合物,其与有机配体形成配合物的稳定性决定了其溶出率的大小,其中可溶态较大的金属元素则可能以自由离子的形式或与某种低分子量配体结合的形式存在由于颗粒小,易通过滤膜而较易被人体吸收.黄芩中金属元素含量及其初级形态分析的研究结果可以为多种中成药制成冲剂、汤剂提供金属元素含量与形态方面的相关信息.  相似文献   

18.
Host-plant adaptation drives the parallel evolution of reproductive isolation   总被引:12,自引:0,他引:12  
Nosil P  Crespi BJ  Sandoval CP 《Nature》2002,417(6887):440-443
Parallel evolution of similar traits in independent populations that inhabit ecologically similar environments strongly implicates natural selection as the cause of evolution. Parallel speciation is a special form of parallel evolution where traits that determine reproductive isolation evolve repeatedly, in closely related populations, as by-products of adaptation to ecological conditions. The outcome of such parallel evolution is that ecologically divergent pairs of populations exhibit greater levels of reproductive isolation than ecologically similar pairs of populations of a similar or younger age. The parallel evolution of reproductive isolation provides strong evidence for natural selection in the process of speciation, but only one conclusive example from nature is known. Populations of the walking-stick insect Timema cristinae that use different host-plant species have diverged in body size and shape, host preference, behaviour and the relative frequency of two highly cryptic colour-pattern morphs. Here we report that divergent selection for host adaptation, and not genetic drift, has promoted the parallel evolution of sexual isolation in this species. Our findings represent a clear demonstration that host-plant adaptation can play a crucial and repeatable role in the early stages of speciation.  相似文献   

19.
通过对比研究不同变温和土壤含水量下,2个物种间萌发特性差异,吸水特性差异,以及两物种幼苗耐旱性,分析两物种紫翅猪毛菜(Salsola affinis C.A.Mey)、散枝猪毛菜(Salsola brachiata Pall.)种子萌发特性与物种分布特征的关系。结果表明:紫翅猪毛菜萌发率高于散枝猪毛菜。在(0/10)℃低温下,2种猪毛菜萌发率及发芽势最高,种子随着温度的升高,萌发率及发芽势均会下降。2个物种均有A、B、C、D类型种子,紫翅猪毛菜种子A→D萌发率逐渐下降,A、B型种子随着温度升高下降显著,而C、D型种子变化缓慢。散枝猪毛菜4种类型种子均在低温下有最高的萌发率,随着温度的升高,种子萌发率下降,且4种类型种子萌发率差异不明显。紫翅猪毛菜在2-3 h时吸水达到稳定,散枝猪毛吸水时间明显延长。紫翅猪毛菜随土壤含水量的降低,萌发率降低,且种子在同一水分梯度下,种子A→D萌发率逐渐降低。散枝猪毛菜种子在土壤含水量最大(26%)时,有最大的萌发率,在低水分10%时,B、C型种子的萌发率高于A型种子。2种猪毛菜幼苗都是随着干旱时间延长,耐旱性越弱,但紫翅猪毛菜幼苗耐旱性明显高于散枝猪毛菜。以上研究结果表明,紫翅猪毛菜和散枝猪毛菜种子萌发特性差异是决定二者在野外的分布区域上存在差异的重要原因。  相似文献   

20.
Random amplified polymorphic DNA (RAPD) technique is applied to 12 individuals from each species of the hairtail fishes Trichiurus lepturus and Eupleurogrammus muticus in the Yellow Sea. The percentage of polymorphic sites, degree of genetic polymorphism and genetic distance are compared and the phylogenetic tree is constructed by Neighbor-joining method. The partial mitochondrial 16S rRNA gene is amplified by polymerase chain reaction (PCR) and the PCR products are directly sequenced after being purified. These sequences, together with the homologous sequences of another Trichiuridae species Lepidopus caudatus obtained from GenBank, are used to analyze nucleotide difference and to construct a UPGMA phylogenetic tree by means of biological informatics. Analysis shows: (1) the RAPD technique is a highly sensitive method for investigating genetic diversity in T. lepturus, and E. muticus. T. lepturus exhibits a lower polymorphism and genetic diversity than E. muticus; (2) according to the analysis of the partial mitochondrial 16S rRNA gene sequences, a very low intraspecific variation and considerably high divergence among species were found, which reveals a dual nature of conservatism and variability in mitochondrial 16S rRNA gene; (3) five primers generate the species-specific RAPD sites and these sites can be served as the molecular markers for species identification and (4) it can be proved at DNA variation level that T. lepturus and E. muticus are of two species respectively pertaining to different genera, which supports the Nelson taxonomic conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号