首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simon J  Bakr WS  Ma R  Tai ME  Preiss PM  Greiner M 《Nature》2011,472(7343):307-312
Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.  相似文献   

2.
Chin JK  Miller DE  Liu Y  Stan C  Setiawan W  Sanner C  Xu K  Ketterle W 《Nature》2006,443(7114):961-964
The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. By using cold atomic gases, various models of condensed matter can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the copper oxides. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in bulk atomic gases include the observation of fermion-pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported but have not yet addressed superfluid behaviour. Here we report the observation of distinct interference peaks when a condensate of fermionic atom pairs is released from an optical lattice, implying long-range order (a property of a superfluid). Conceptually, this means that s-wave pairing and coherence of fermion pairs have now been established in a lattice potential, in which the transport of atoms occurs by quantum mechanical tunnelling and not by simple propagation. These observations were made for interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly as a result of a transition from superfluid to insulator. Such strongly interacting fermions in an optical lattice can be used to study a new class of hamiltonians with interband and atom-molecule couplings.  相似文献   

3.
Greiner M  Regal CA  Jin DS 《Nature》2003,426(6966):537-540
The realization of superfluidity in a dilute gas of fermionic atoms, analogous to superconductivity in metals, represents a long-standing goal of ultracold gas research. In such a fermionic superfluid, it should be possible to adjust the interaction strength and tune the system continuously between two limits: a Bardeen-Cooper-Schrieffer (BCS)-type superfluid (involving correlated atom pairs in momentum space) and a Bose-Einstein condensate (BEC), in which spatially local pairs of atoms are bound together. This crossover between BCS-type superfluidity and the BEC limit has long been of theoretical interest, motivated in part by the discovery of high-temperature superconductors. In atomic Fermi gas experiments superfluidity has not yet been demonstrated; however, long-lived molecules consisting of locally paired fermions have been reversibly created. Here we report the direct observation of a molecular Bose-Einstein condensate created solely by adjusting the interaction strength in an ultracold Fermi gas of atoms. This state of matter represents one extreme of the predicted BCS-BEC continuum.  相似文献   

4.
Strong interactions between electrons in a solid material can lead to surprising properties. A prime example is the Mott insulator, in which suppression of conductivity occurs as a result of interactions rather than a filled Bloch band. Proximity to the Mott insulating phase in fermionic systems is the origin of many intriguing phenomena in condensed matter physics, most notably high-temperature superconductivity. The Hubbard model, which encompasses the essential physics of the Mott insulator, also applies to quantum gases trapped in an optical lattice. It is therefore now possible to access this regime with tools developed in atomic physics. However, an atomic Mott insulator has so far been realized only with a gas of bosons, which lack the rich and peculiar nature of fermions. Here we report the formation of a Mott insulator of a repulsively interacting two-component Fermi gas in an optical lattice. It is identified by three features: a drastic suppression of doubly occupied lattice sites, a strong reduction of the compressibility inferred from the response of double occupancy to an increase in atom number, and the appearance of a gapped mode in the excitation spectrum. Direct control of the interaction strength allows us to compare the Mott insulating regime and the non-interacting regime without changing tunnel-coupling or confinement. Our results pave the way for further studies of the Mott insulator, including spin-ordering and ultimately the question of d-wave superfluidity.  相似文献   

5.
Bloch I 《Nature》2008,453(7198):1016-1022
At nanokelvin temperatures, ultracold quantum gases can be stored in optical lattices, which are arrays of microscopic trapping potentials formed by laser light. Such large arrays of atoms provide opportunities for investigating quantum coherence and generating large-scale entanglement, ultimately leading to quantum information processing in these artificial crystal structures. These arrays can also function as versatile model systems for the study of strongly interacting many-body systems on a lattice.  相似文献   

6.
7.
Fölling S  Gerbier F  Widera A  Mandel O  Gericke T  Bloch I 《Nature》2005,434(7032):481-484
In a pioneering experiment, Hanbury Brown and Twiss (HBT) demonstrated that noise correlations could be used to probe the properties of a (bosonic) particle source through quantum statistics; the effect relies on quantum interference between possible detection paths for two indistinguishable particles. HBT correlations--together with their fermionic counterparts--find numerous applications, ranging from quantum optics to nuclear and elementary particle physics. Spatial HBT interferometry has been suggested as a means to probe hidden order in strongly correlated phases of ultracold atoms. Here we report such a measurement on the Mott insulator phase of a rubidium Bose gas as it is released from an optical lattice trap. We show that strong periodic quantum correlations exist between density fluctuations in the expanding atom cloud. These spatial correlations reflect the underlying ordering in the lattice, and find a natural interpretation in terms of a multiple-wave HBT interference effect. The method should provide a useful tool for identifying complex quantum phases of ultracold bosonic and fermionic atoms.  相似文献   

8.
Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials to isolate and manipulate arrays of paired (87)Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling in a system of neutral atoms. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its 'half-implementation', the root SWAP gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation.  相似文献   

9.
A revolution in optical manipulation   总被引:4,自引:0,他引:4  
Grier DG 《Nature》2003,424(6950):810-816
Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.  相似文献   

10.
Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.  相似文献   

11.
Bakr WS  Preiss PM  Tai ME  Ma R  Simon J  Greiner M 《Nature》2011,480(7378):500-503
Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.  相似文献   

12.
Greiner M  Mandel O  Hänsch TW  Bloch I 《Nature》2002,419(6902):51-54
A Bose-Einstein condensate represents the most 'classical' form of a matter wave, just as an optical laser emits the most classical form of an electromagnetic wave. Nevertheless, the matter wave field has a quantized structure owing to the granularity of the discrete underlying atoms. Although such a field is usually assumed to be intrinsically stable (apart from incoherent loss processes), this is no longer true when the condensate is in a coherent superposition of different atom number states. For example, in a Bose-Einstein condensate confined by a three-dimensional optical lattice, each potential well can be prepared in a coherent superposition of different atom number states, with constant relative phases between neighbouring lattice sites. It is then natural to ask how the individual matter wave fields and their relative phases evolve. Here we use such a set-up to investigate these questions experimentally, observing that the matter wave field of the Bose-Einstein condensate undergoes a periodic series of collapses and revivals; this behaviour is directly demonstrated in the dynamical evolution of the multiple matter wave interference pattern. We attribute the oscillations to the quantized structure of the matter wave field and the collisions between individual atoms.  相似文献   

13.
Takamoto M  Hong FL  Higashi R  Katori H 《Nature》2005,435(7040):321-324
The precision measurement of time and frequency is a prerequisite not only for fundamental science but also for technologies that support broadband communication networks and navigation with global positioning systems (GPS). The SI second is currently realized by the microwave transition of Cs atoms with a fractional uncertainty of 10(-15) (ref. 1). Thanks to the optical frequency comb technique, which established a coherent link between optical and radio frequencies, optical clocks have attracted increasing interest as regards future atomic clocks with superior precision. To date, single trapped ions and ultracold neutral atoms in free fall have shown record high performance that is approaching that of the best Cs fountain clocks. Here we report a different approach, in which atoms trapped in an optical lattice serve as quantum references. The 'optical lattice clock' demonstrates a linewidth one order of magnitude narrower than that observed for neutral-atom optical clocks, and its stability is better than that of single-ion clocks. The transition frequency for the Sr lattice clock is 429,228,004,229,952(15) Hz, as determined by an optical frequency comb referenced to the SI second.  相似文献   

14.
当一束光照射在物质上,光子与物质发生动量交换,部分动量转移到物质,等效于对物质产生作用力,称为光学力.这一作用力非常弱,一般在pN甚至更小的量级,但一定条件下,仍足以捕获和操纵纳米、微米尺度的物体.在金属纳米结构中,由于表面等离激元共振效应,诱导的局域电场可以产生增强的光学力,可以在亚波长尺度实现光操纵,并且由此衍生出一个极具吸引力的研究方向——表面等离激元光学力.本文介绍了利用金属纳米结构进行表面等离激元光学力操纵的最新研究进展.  相似文献   

15.
In relativistic quantum field theory, information propagation is bounded by the speed of light. No such limit exists in the non-relativistic case, although in real physical systems, short-range interactions may be expected to restrict the propagation of information to finite velocities. The question of how fast correlations can spread in quantum many-body systems has been long studied. The existence of a maximal velocity, known as the Lieb-Robinson bound, has been shown theoretically to exist in several interacting many-body systems (for example, spins on a lattice)--such systems can be regarded as exhibiting an effective light cone that bounds the propagation speed of correlations. The existence of such a 'speed of light' has profound implications for condensed matter physics and quantum information, but has not been observed experimentally. Here we report the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open perspectives for understanding the relaxation of closed quantum systems far from equilibrium, and for engineering the efficient quantum channels necessary for fast quantum computations.  相似文献   

16.
我们首先简要介绍了超冷原子和光晶格,然后利用推广的单带Hubbard模型讨论了二维正方光晶格中自旋3/2费米型超冷原子体系中的几种Mott绝缘态,其中该系统的自旋自由度具有较大SO(5)对称性.对于对称性破缺的自旋四极矩有序态和自旋偶极-八极矩共存有序态,我们详细研究了系统的低能集体激发模式-Goldstone玻色激发的具体行为.在SU(4)对称点附近,我们发现强烈的量子涨落可能会演生出一个SU(4)π通量的自旋液体态.对此,我们还分析了这两种奇异量子态之间可能存在的量子相变.  相似文献   

17.
Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.  相似文献   

18.
Over the past decade, strong interactions of light and matter at the single-photon level have enabled a wide set of scientific advances in quantum optics and quantum information science. This work has been performed principally within the setting of cavity quantum electrodynamics with diverse physical systems, including single atoms in Fabry-Perot resonators, quantum dots coupled to micropillars and photonic bandgap cavities and Cooper pairs interacting with superconducting resonators. Experiments with single, localized atoms have been at the forefront of these advances with the use of optical resonators in high-finesse Fabry-Perot configurations. As a result of the extreme technical challenges involved in further improving the multilayer dielectric mirror coatings of these resonators and in scaling to large numbers of devices, there has been increased interest in the development of alternative microcavity systems. Here we show strong coupling between individual caesium atoms and the fields of a high-quality toroidal microresonator. From observations of transit events for single atoms falling through the resonator's evanescent field, we determine the coherent coupling rate for interactions near the surface of the resonator. We develop a theoretical model to quantify our observations, demonstrating that strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity. Our work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks, scalable quantum logic with photons, and quantum information processing on atom chips.  相似文献   

19.
20.
Gomes KK  Mar W  Ko W  Guinea F  Manoharan HC 《Nature》2012,483(7389):306-310
The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the relativistic magnetic quantum limit, which has so far been inaccessible in natural graphene. Molecular graphene provides a versatile means of synthesizing exotic topological electronic phases in condensed matter using tailored nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号