首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对转向系统失效的情况,基于执行器扭矩重新分配,提出了一种容错控制策略;根据所需车辆运动,建立双点预瞄模型,推导出期望的方向盘转角;利用二自由度汽车模型,进一步得到目标横摆角速度以及目标车身侧偏角,利用滑模控制得到所需的横摆力矩,通过扭矩分配策略实现容错控制;通过控制各个车轮执行器的输出扭矩,使汽车沿规划路径行驶;通过仿真实验,汽车的横摆角速度与期望的横摆角速度吻合度极高,提出的算法可以有效地应对线控转向汽车的转向故障,验证了针对转向失效的容错控制的有效性,有一定的工程实用性。  相似文献   

2.
主动转向系统能通过主动转角补偿的方式实现横摆力矩控制,以改善车辆转向稳定性。针对横摆力矩控制,提出了基于T-S模糊理论的LQR多目标控制器的主动转向系统。该系统综合考虑主动转向系统的有效工作区间和车辆操纵模型中轮胎的非线性问题,采用T-S模糊理论建立了主动转向系统模型,并基于横摆角速度和车辆侧偏角这两个控制变量,设计了LQR多目标控制器。仿真分析结果表明,所提出的基于T-S模糊理论的LQR多目标控制器的主动转向系统整体上能降低横摆角速度、车辆侧偏角和侧向加速度,并快速达到稳定状态。该系统能有效改善车辆的转向稳定性,从而为主动转向系统的设计和应用提供理论参考与方法依据。  相似文献   

3.
针对具有线控技术的四轮转向车辆,设计了一种全滑模控制器用于提高车辆的操纵稳定性.以前、后车轮转角作为控制输入,设计全滑模控制器使实际的质心侧偏角和横摆角速度跟踪理想的质心侧偏角和横摆角速度,通过在滑模面中加入跟踪误差积分项来消除稳态跟踪误差不为零的现象,并运用Lyapunov定理给出了全滑模控制器的稳定条件.最后通过2种车辆模型下不同工况的仿真分析,对比了传统前轮转向、常规滑模控制的四轮转向和全滑模控制的四轮转向的动力学响应,结果表明所设计的全滑模控制器不仅消除了稳态跟踪误差不为零的现象,而且提升了车辆抵抗外界干扰和系统参数摄动的鲁棒性.  相似文献   

4.
提出了一种后轮脉冲主动转向控制策略,运用脉冲信号作为控制器输出的后轮主动转向控制方法,对此做了理论分析和试验研究.首先,设计了产生脉冲信号的液压系统,并分析了此系统的运行对悬架参数和车辆稳态和瞬态响应的影响;分析不同脉冲参数(频率,振幅)对车辆横摆运动的影响并确定最优的脉冲参数.其次,综合跟随理想横摆角速度和抑制汽车质心侧偏角的方法,提出了控制策略与算法;运用基于CarSim和Simulink的联合仿真方法,分析此系统对汽车横摆稳定性能的影响;最后,安装液压脉冲发生器进行整车试验研究,验证仿真结果的可信性,并评价后轮脉冲转向的实用性.仿真和试验结果表明:后轮脉冲主动转向能够有效的跟踪横摆角速度和质心侧偏角提高车辆的横摆稳定性,同时可以减少质心侧倾角和侧向加速度,提高汽车的操纵稳定性.  相似文献   

5.
以二自由度整车操纵稳定性研究为基础,建立车身零侧偏角的前馈控制策略对四轮转向车辆实施控制.在MATLAB中建立前轮转向、四轮转向车辆模型,并在角阶跃工况下进行仿真,发现其存在横摆角速度损失的缺陷,提出PID车身横摆角补偿控制策略,通过建模在角阶跃工况下仿真.结果表明:横摆角速度补偿控制策略可较好地解决车辆转向灵敏度的问题.  相似文献   

6.
针对高地隙自走式车辆动力系统非线性以及多耦合的问题,本文提出基于BP神经网络的自抗扰主动前轮转向控制策略,建立了高地隙车辆非线性七自由度操纵稳定性动力学模型及其参考模型;设计了质心侧偏角自抗扰控制器以及横摆角速度自抗扰控制器,对整车行驶过程中质心侧偏角和横摆角速度之间的耦合特性以及非线性因素进行在线估计和抑制;添加BP神经网络模块对控制器参数进行在线寻优,提高控制器精度和鲁棒性;最后,基于MATLAB/Simulink仿真了高地隙车辆在不同路面环境转向工况下的响应。研究结果表明:基于BP神经网络的自抗扰主动前轮转向控制器BPADRC对比无控制,质心侧偏角峰值降低约6%,横摆角速度峰值降低约7%;对比普通的自抗扰控制器ADRC,控制精度更高,鲁棒性更好。  相似文献   

7.
为了避免汽车在低附着路面上高速转弯或者紧急避障时易发生不稳定现象,设计了基于模糊理论和滑模理论的模糊滑模控制策略。建立车辆二自由度理想模型,选择横摆角速度和质心侧偏角作为控制变量,对其理想值进行计算;基于车辆运动参数对失稳状态做出分析;并对失稳状态下的车辆进行横摆力矩控制。基于等效控制法设计了积分滑模控制器,对横摆角速度和质心侧偏角的偏差采用质心侧偏角协调加权法调节比例权重,并通过模糊控制规则调节滑模控制器切换系统的切换增益大小,建立模糊滑模控制器。在MATLAB/Simulink中对控制策略进行仿真分析,仿真结果表明:在阶跃工况下,横摆角速度的稳态值与理想值仅差0.005 rad/s,质心侧偏角与理想值几乎重合,仅差0.003 rad;正弦工况下,横摆角速度超调值与理想值仅差0.04 rad/s,质心侧偏角也仅差0.008 rad。与参数自整定模糊PI控制策略相比,模糊滑模控制响应速度更快,能够较好地跟踪理想曲线,达到稳态效果更好;同时能产生更大的横摆力矩,更好地控制汽车的稳定性,验证了控制模型的正确性。  相似文献   

8.
针对四轮独立驱动电动汽车转向稳定性的横摆力矩控制问题,建立了七自由度整车模型和Dugoff轮胎模型.基于滑模控制理论,选择质心侧偏角和横摆角速度两者为联合控制变量,并以汽车车速和路面附着系数为输入,运用模糊控制理论确定联合控制变量的联合控制参数,设计了四轮独立驱动电动汽车转向稳定性的横摆力矩控制策略.在Matlab/Simulink环境下选取不同车速、不同路面附着系数进行了连续转向行驶和突然转向行驶的仿真分析.结果表明,所设计的控制策略能够将质心侧偏角和横摆角速度控制在稳定范围内,使车辆在任意转向行驶工况下保持稳定,最大限度地提高轮毂电动汽车的转向稳定性.  相似文献   

9.
车辆总是承担不同的载荷,车辆建模亦存在着误差, 传统四轮转向控制器难以达到原有的性能指标;针对外界干扰,采用μ综合鲁棒控制方法,构造横摆角速度跟踪综合控制系统设计框架, 选取了不同环节的权函数。仿真结果表明,四轮转向车辆控制系统具有良好的动态性能、鲁棒稳定性和鲁棒性能,有效地提高了车辆操纵稳定性和安全性。  相似文献   

10.
为了提高四轮独立转向车辆的操纵稳定性,文章提出一种基于数据融合算法的车辆转角控制分配策略。策略分上下2层:上层为后轮转角控制,为使车辆跟随理想横摆角速度和质心侧偏角,通过滑模控制理论控制后轮转角,并与前轮比例前馈控制的后轮转角进行数据融合;下层为转角分配,基于阿克曼转向关系并考虑轮胎侧偏的影响,进行四轮转角的分配。通过MATLAB/Simulink在不同工况下进行仿真分析,对比线性二次调节器(linear quadratic regulator, LQR)控制四轮转向和融合控制四轮独立转向的横摆角速度和质心侧偏角。仿真结果表明,所提出的融合控制策略在不同工况下改善了车辆操纵稳定性。  相似文献   

11.
四轮转向车辆的直接横摆力矩控制   总被引:9,自引:0,他引:9  
将横摆力矩控制(DYC)与四轮转向(4WS)系统相结合,建立侧偏角和横摆角速度具有最佳输出响应的车辆理想模型.采用前馈和反馈控制相结合跟踪理想模型的控制策略,设计出最优控制器,并分别在低速和高速下进行仿真分析.结果表明:四轮转向模型与横摆力矩控制相结合,采用跟踪理想模型的控制策略能够有效地同时控制汽车转向侧偏角和横摆角速度,得到较好的瞬态及稳态响应,有效地减轻驾驶员操纵负担,提高了车辆操纵稳定性.尤其在高速行驶时,仍能获得较好的输出响应,利于提高行车安全性.  相似文献   

12.
文章以叉车二自由度线性模型为基础,结合叉车自身特点与转向要求,采用横摆角速度反馈控制策略对三轮全转向叉车进行控制研究。系统仿真输入为方向盘转角,系统输出为横摆角速度和质心侧偏角,通过横摆角速度反馈形成闭环控制,从而调节3个车轮输入转角。仿真结果表明,基于横摆角速度反馈的控制策略有效改善了三轮叉车的机动性能,提高了叉车操纵稳定性。  相似文献   

13.
为了提高电传动履带车辆的原地转向性能,从履带车辆原地转向动力学模型出发,提出一种基于双电机力矩控制的电传动履带车辆原地转向控制策略,首先增大电机力矩初始值以提高转向响应速度,进而将方向盘转角信号引入横摆角速度负反馈增益从而实现驾驶员对转向速度的控制.使用D2P快速原型开发系统构建了履带车辆原地转向“驾驶员+控制器”在环仿真平台,通过实时仿真对所提出的控制算法进行了验证,结果表明设计的控制策略正确有效,且具有良好的实时性.  相似文献   

14.
杨胜培  周海军 《太原科技》2014,(5):61-63,66
针对汽车线控转向车辆,以四轮转向车辆模型为基础,将四轮转向车辆的横摆角速度和质心侧偏角作为参照控制目标,研究了线控转向车辆转向传动比在车速以及转向盘转角发生变化时,随车辆转向特性变化而进行优化设置的问题。仿真结果表明,基于参考模型横摆角速度反馈控制方案设置的变传动比控制整体性能最好。  相似文献   

15.
为提高电动方程式赛车的操纵稳定性,文章提出一种后置双电机独立驱动方程式赛车直接横摆力矩双层控制策略。上层为直接横摆力矩控制器,分别设计基于横摆角速度的模糊控制器、基于质心侧偏角的模糊控制器和联合模糊控制器;下层为驱动力分配控制器,依据电机特性平均分配直接横摆力矩。基于CarSim与Simulink仿真环境,选取双移线工况进行联合仿真验证控制策略的效果;设计硬件在环试验平台,验证直接横摆力矩控制策略。试验结果表明:横摆力矩控制策略能有效保障车辆的操纵稳定性;低速时,可以实现助力转向;高速时,质心侧偏角控制在2.5°以内,实现稳定性控制。  相似文献   

16.
针对履带车辆在行驶过程中,由于路面条件非线性变化导致的车速和转向角速度跟踪存在时滞和不稳定的问题,基于履带车辆转向运动学和动力学分析,提出了一种基于滑模变结构的转向控制方法,并将履带车辆的控制系统进行解耦,分别控制车速及转向角速度.采用积分滑模控制算法,设计了能够适应路面变化的车速控制器;引入模糊控制柔化控制信号,降低滑模抖振,并结合自适应调节设计了能够适应转向阻力非线性不确定的转向角速度控制器.运用MATLAB/Simulink软件对系统进行转向控制仿真分析,与传统比例-积分-微分(PID)控制相比较,车辆行驶速度与转向角速度跟踪响应速度分别提高了1.9 s和0.5 s,转向角速度跟踪精度提高了4%.仿真结果表明:所提出的算法具备响应速度快、抗扰动能力强的优点,能够实现履带车的稳定转向.  相似文献   

17.
针对4WID车辆主动安全控制,设计开发了一种基于主动前轮转向(active front steering,AFS)、直接横摆力矩控制(direct yaw-moment control,DYC)与驱动防滑(acceleration slip regulation,ASR)集成的控制系统.控制系统采用分层控制结构,其中决策层基于滑模变结构控制理论与车辆相平面稳定判据,设计了横摆角速度与质心侧偏角协调控制器,计算保持车辆稳定性所需的附加横摆力矩.此外,基于滑移率门限值,设计了模糊PI控制器,分配AFS模块与DYC模块输入的附加横摆力矩,获得最终附加横摆力矩与附加前轮转角.执行层通过对驱动/制动力矩与前轮转角的控制,实现速度保持,滑移率控制与车辆稳定性控制功能.仿真结果表明,在高速、低附着系数路面的极限工况下,集成控制策略可实现车辆操纵稳定性控制且综合性能优于单独控制.  相似文献   

18.
考虑非线性特征的4WS车辆滑模鲁棒稳定性控制   总被引:2,自引:0,他引:2  
为了系统地分析非线性四轮转向车辆的动力学行为,并同时考虑实际车辆运行工况的复杂性,建立了具有非线性特征的四轮转向车辆动力学模型.选择质心侧偏角和横摆角速度作为控制变量,基于滑模控制理论和最优反馈控制理论,分别设计控制器抑制外部扰动;在J-turn的操纵模式下,比较2种控制算法的优越性,基于Matlab/Simulink环境下实现仿真结果的对比.结果表明,滑模控制下四轮转向车辆具有更优的操纵性能,将质心侧偏角控制在稳定范围内,并能较好地跟踪车辆的期望横摆角速度,可较理想地提高高速环境下四轮转向的抗干扰能力.  相似文献   

19.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

20.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号