共查询到20条相似文献,搜索用时 0 毫秒
1.
针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础上对输入数据实现了有效的降维,大大缩短了计算时间,有效地满足了车牌实时识别系统技术要求.通过实验对比可知,该方法比目前常用的PCA及FLD算法具有更高的性能指标. 相似文献
2.
在长短期记忆神经网络(LSTM)的基础上,运用双向的长短期记忆神经网络(BiLSTM),结合卷积神经网络(CNN)提出了一个预测模型,对超短期电力负荷预测.运用合肥市2019年全年数据对该模型进行训练及预测,结果显示,CNN-BiLSTM预测精度高于CNN-LSTM预测模型,为进一步提升预测精确度,在BiLSTM神经网络后面连接了一个Attention在输出,发现其预测精度进一步提升了. 相似文献
3.
为了更好地对股票走势进行预测,提出了一种在原有BiLSTM基础上引入注意力机制的股票预测模型,该模型不仅将股票交易数据作为模型输入,同时考虑到金融新闻对股价的影响.针对Reddit中苹果公司2010年到2018年间每日的新闻标题进行了研究,模型的输入特征来自于3部分:一是从文本数据中提取出的语义特征,二是股票的历史交易数据,三是从文本数据中提取出的情感特征,最后将上述输入特征融合到一起放入BiLSTM+Attention模型中进行训练,达到对股票的次日收盘价预测的效果.最终对5个模型进行对比实验,评价指标结果表明,提出的模型较其他模型相比预测效果更好. 相似文献
4.
主成分分析(PCA)是一种重要的特征抽取方法,而核主成分分析(KPCA)是在此基础上结合核函数提出来的主成分分析法,在多维回归分析中具有重要的作用。最小二乘支持向量机(LS-SVM)是SVM的一种改进算法,将KPCA与LS-SVM结合起来建模,并试验说明较之单独用最小二乘支持向量机(LS-SVM)建模方法具有更良好的推广性。 相似文献
5.
对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提出了一种改进的深度学习预测模型(CS-BiLSTM),该模型基于卷积神经网络(convolutional neural networks, CNN)和双向长短期记忆(bidirectional long short-term memory, BiLSTM),并结合Softmax函数增强CNN提取出的交通空间特征信息。最后以成都市出租车的全球定位系统(global positioning system, GPS)数据进行验证。结果表明,所提出的CS-BiLSTM模型具有更高的准确性,其性能相比CNN-BiLSTM网络预测框架提升了13%。 相似文献
6.
配电台区负荷预测是保障电力供需平衡的关键,对电力系统的安全预警、应急维护和经济运行具有重要的指导作用.受多种耦合因素影响,面向台区负荷的中短期常规预测方法存在较大的局限性.为提高台区负荷预测方法的泛化能力,提出一种基于双向长短期记忆网络(bidirectionallongshort-termmemory,BiLSTM),并引入要素主成分分析(principalcomponentanalysis,PCA)和用电行为分析的中短期日负荷预测模型.首先,基于PCA方法提取预选的影响用电负荷外在因素的主成分,实现对包含冗余、缺失和异常信息的输入变量的降维和修正;其次,依据历史负荷数据,利用基于遗传算法(geneticalgorithm,GA)的模糊C均值(fuzzyC-means,FCM)聚类提取台区内不同用户的用电行为特征并依此划分台区内的用户集合,降低用电行为差异对预测结果的影响;然后,搭建每类用户的BiLSTM预测模型,并应用随机权重平均(stochasticweightaveraging,SWA)算法提升预测模型的泛化能力,以年为单位预测日负荷电量;最后,将每类用户的负荷预测数据进行线性... 相似文献
7.
如何选择最优或接近最优的核函数使分类错误率降低,是KPCA(Kenel Principle Com-portent Analysis)应用于特征提取的关键.本文在研究了文化算法(Cultural Algorithms,CA)相关文献的基础上,提出了一种训练核函数参数的文化算法流程,实现了KPCA和CA的集成,有效地提高了核函数的优化选择.仿真结果表明该方法具有较好的结果和更少的计算量. 相似文献
8.
基于PCA和KPCA特征抽取的SVM网络入侵检测方法 总被引:6,自引:0,他引:6
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。 相似文献
9.
针对风电功率序列具有波动性和较高复杂度的特点,本文提出一种基于麻雀算法(SSA)优化的双向长短期记忆神经网络(BiLSTM)和奇异谱分析的短期风电功率预测模型。首先,采用奇异值分析对历史功率数据进行特征提取,去噪处理减少噪声信息干扰;其次,利用麻雀算法对BiLSTM模型超参数寻优,以BiLSTM为基础构建风电功率预测模型,提高了模型训练效率;最后,采用某风电场的运行数据验证模型精度并对比其他模型验证模型合理性。实验结果表明:改进后的模型相对于基准模型,绝对误差降低了14.2%,均方根误差降低了4.24%,本文所提改进BiLSTM模型具有较好的预测性能,能有效提高短期风电功率预测的精度。 相似文献
10.
11.
针对现有的第Ⅰ类HLA(HLA-Ⅰ)分子与多肽结合亲和力预测算法在特征构造时依赖传统序列评分函数的问题,为突破用经典机器学习算法构造氨基酸序列特征的局限性,提出一种基于蛋白质预训练模型ProtBert的HLA-Ⅰ与多肽的结合预测算法ProHLAⅠ.该算法利用生命体语言与文本语言在组成上的共性,将氨基酸序列类比句子,通过整合ProtBert预训练模型、 BiLSTM编码和注意力机制的网络结构优势,对HLA-Ⅰ序列和多肽序列进行特征提取,从而实现HLA-Ⅰ独立于位点的多肽结合预测.实验结果表明,该模型在两组独立测试集中均取得了最优性能. 相似文献
12.
以PCA,ICA为代表的多元统计监测方法总是基于各种各样的前提假设,如果不考虑它们的适用条件盲目选择监测算法,则可能给出错误结论,增加故障误报漏报的概率.针对理论方法在应用时面临的条件限制问题,在无先验知识的情况下,提出一种数据特性的分析方法,通过参数寻优并逐步剔除线性相关变量组的方法,实现多变量过程线性非线性的自动判别.仿真分析表明所提方法可以根据数据特点及各算法的适用条件自动选择适当的监测算法,具有一定的实用价值. 相似文献
13.
为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系。提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network, LSTM)用于电力负荷的短期预测。所提算法先对原始负荷序列进行自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),再将CEEMDAN分解后分量中的强非平稳分量进行变分模态分解(variational mode decomposition, VMD),同时用中心频率法对VMD分解个数进行优化,然后将两次分解后得到的负荷子序列送入LSTM中进行预测,并将所得分量预测结果进行叠加。结果表明,本文所提方法对短期电力负荷预测结果精度和模型性能都有较大提升。 相似文献
14.
为了提高电力负荷曲线聚类精度,文中提出了一种基于核主成分分析(KPCA)和改进K-means算法的电力负荷曲线聚类方法。该方法首先在划分聚类算法K-means基础上融入密度聚类思想,提出了融合密度思想的K-means算法(DK-means算法),并在电力负荷曲线实验集上对比分析其聚类效果;接着在实验集上比较各种降维算法的降维聚类精度和降维速度;最后分析KPCA+DK-means组合算法的降维聚类能力。结果表明,戴维森堡丁指数(DBI)更适合作为电力负荷曲线聚类评价指标;以DBI为评价指标,与K-means、BIRCH、DBSCAN和EnsClust 4种聚类算法相比,DK-means的聚类精度更高;与LLE、MDS、ISOMAP 3种非线性降维算法相比,KPCA的降维速度更快;KPCA+DK-means组合算法有良好的降维聚类能力,较DK-means在聚类精度和聚类效率上均有提升。KPCA+DK-means组合算法可以实现电力负荷曲线的高效降维、精确聚类,对用电行为模式的准确提取起关键技术支持作用。 相似文献
15.
为了提高蛋白质O-糖基化位点的预测准确率,提出了把核主成分分析(KPCA)与支持向量机(SVM)相结合的方法。实验样本用稀疏编码方式编码,窗口长度为21。首先,用核主成分分析提取了样本的核主成分(特征);然后,在特征空间中用改进的支持向量机(ISVM)进行分类(预测)。在使用支持向量机分类时,设置了一个边界系数来减少运算的复杂度。实验结果表明,使用KPCA ISVM的方法预测的效果优于PCA SVM的预测效果。预测准确率为87%。更进一步,用不同长度的样本做实验(w=5,7,9,11,21,31,41,51),使用多数投票法综合各子分类器的优势。结果表明,组合分类器的预测准确率优于子分类器的预测准确率,预测准确率为88%。 相似文献
16.
空中交通流量短期预测对于精准实施空中交通流量管理具有重要意义。为提高空中交通流量短期预测准确性,充分利用历史运行数据,提出了基于动态时间规整和长短期记忆(dynamic time warping-long short-term memory, DTW-LSTM)的空中交通流量短期预测模型。首先,分析了空中交通流的时空相关性特征,采用DTW算法衡量扇区之间交通流相关性;其次,依据相关性度量结果构建数据集,在不同输入条件下建立LSTM网络预测模型;最后,在不同时空参数组合模型间展开预测性能对比及分析。实验结果表明,相较于不考虑时空相关性的LSTM模型,本模型平均绝对误差(mean absolute error, MAE)降低24.5%,均方根误差(root mean squared error, RMSE)降低31.4%,相较于时空相关性的支持向量回归(support vector regression, SVR)模型,MAE降低36.4%,RMSE降低30.6%。由此可见,通过考虑交通流时空相关性可以有效提升流量短期预测的准确性,为空中交通流预测提供有益参考。 相似文献
17.
为了解决人脸识别算法双向二维主元分析(2D2PCA)表征的信息不全面,鲁棒性差、识别速率较慢的问题,提出了一种结合二维离散余弦变换(DCT)算法和改进的双向二维主成分分析算法(模块(2D)2PCA)的新的人脸图像识别算法,该算法首先利用二维离散余弦逆变换(DCT)对人脸图像进行压缩,利用二维离散余弦逆变换(IDCT)对图像进行重建,可以去除了人脸图像中的干扰冗余信息。然后通过改进的2D2PCA算法即分块2D2PCA提取重建人脸图像中的特征。最后,用最近邻法对人脸图像进行识别,并定义了人脸图像相似度的概念。本文对ORL人脸图像数据库进行了实验。实验表明,本文算法有效的增强了识别的鲁棒性,缩短了识别的时间。 相似文献
18.
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测.通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-L... 相似文献
19.
为了克服光伏发电固有的间断性和波动性对电网稳定性的负面影响,提出一种二维灰度关联分析-双向长短期记忆神经网络(two-dimensional grey relational analysis and bidirectional long short-term memory network, 2DGRA-BiLSTM)模型,用于实现日前光伏功率曲线预测,以更好指导电网调度.不同于以往的点预测,本研究将日功率曲线作为整体进行预测.首先用2DGRA实现最佳历史相似日数据的获取;其次,根据日功率曲线的波动性将总数据分为3类;最后,根据3种分类,分别训练3种BiLSTM模型对日功率曲线进行预测.所提出的预测模型通过沙漠知识澳大利亚太阳能中心历史气象和功率数据进行训练,并通过数值天气预报和功率数据进行测试.对比其他几种神经网络模型,实验表明所提出模型具有更好的综合预测性能,在晴空、轻度非晴空和重度非晴空条件下,决定系数(R2)分别为0.994、0.940和0.782. 相似文献
20.
为了进一步降低隐写分析算法的检测错误率,文章提出一种基于卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long short-term memory, LSTM)的隐写分析算法。该算法利用CNN捕获载体图像的结构特征,同时利用LSTM捕获图像的前后时序特征。为了验证混合神经网络的有效性,该算法以XuNet和SRNet为基准隐写分析网络,探讨CNN与LSTM的有效组合方式。实验结果表明,所提方法可以有效提高隐写分析算法的检测能力。 相似文献