首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Haga  T Haga  A Ichiyama  T Katada  H Kurose  M Ui 《Nature》1985,316(6030):731-733
Muscarinic receptors trigger several different responses including an increase in concentration of cyclic GMP, a decrease in cyclic AMP concentration, breakdown of polyphosphoinositides and changes in ion permeability. It is not yet clear whether these reactions occur sequentially or independently and which directly coupled to the muscarinic receptor. Several lines of evidence indicate that muscarinic receptors in many, if not all, cell types are coupled to the inhibitory guanine nucleotide regulatory protein (Ni or Gi) of adenylate cyclase. To provide direct evidence for this coupling, we have reconstituted muscarinic receptors purified from porcine brain with Ni purified from rat brain in a phospholipid vesicle. Here, we report that the GTPase activity of Ni is stimulated by carbachol. This action is blocked by the simultaneous addition of atropine and is not observed when the Ni protein is ADP-ribosylated. We conclude that one function of the muscarinic receptor is the activation of Ni.  相似文献   

2.
GTP-binding proteins couple cardiac muscarinic receptors to a K channel   总被引:12,自引:0,他引:12  
Binding of acetylcholine (ACh) to cardiac muscarinic ACh receptors (mAChR) activates a potassium channel that slows pacemaker activity. Although the time course of this activation suggests a multi-step process with intrinsic delays of 30-100 ms, no second-messenger system has been demonstrated to link the mAChR to the channel. Changes in cyclic nucleotide levels (cyclic AMP and cyclic GMP) do not affect this K channel or its response to muscarinic agonists. Indeed, electrophysiological experiments argue against the involvement of any second messenger that diffuses through the cytoplasm. We report here that coupling of the mAChR in embryonic chick atrial cells to this inward rectifying K channel requires intracellular GTP. Furthermore, pretreatment of cells with IAP (islet-activating protein from the bacterium Bordetella pertussis) eliminates the ACh-induced inward rectification. As IAP specifically ADP-ribosylates two GTP-binding proteins, Ni and No, that can interact with mAChRs, we conclude that a guanyl nucleotide-binding protein couples ACh binding to channel activation. This represents the first demonstration that a GTP-binding protein can regulate the function of an ionic channel without acting through cyclic nucleotide second messengers.  相似文献   

3.
:Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

4.
Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

5.
6.
D L Gill  T Ueda  S H Chueh  M W Noel 《Nature》1986,320(6061):461-464
Ca2+ accumulation and release from intracellular organelles is important for Ca2+-signalling events within cells. In a variety of cell types, the active Ca2+-pumping properties of endoplasmic reticulum (ER) have been directly studied using chemically permeabilized cells. The same preparations have been extensively used to study Ca2+ release from ER, in particular, release mediated by the intracellular messenger inositol 1,4,5-trisphosphate (InsP3). So far, these studies and others using microsomal membrane fractions have revealed few mechanistic details of Ca2+ release from ER, although a recent report indicated that InsP3-mediated Ca2+ release from liver microsomes may be dependent on GTP. In contrast to the latter report, we describe here the direct activation of a specific and sensitive guanine nucleotide regulatory mechanism mediating a substantial release of Ca2+ from the ER of cells of the neuronal cell line N1E-115. These data indicate the operation of a major new Ca2+ gating mechanism in ER which is specifically activated by GTP, deactivated by GDP, and which appears to involve a GTP hydrolytic cycle.  相似文献   

7.
Plasma membrane receptors for hormones, drugs, neurotransmitters and sensory stimuli are coupled to guanine nucleotide regulatory proteins. Recent cloning of the genes and/or cDNAs for several of these receptors including the visual pigment rhodopsin, the adenylate-cyclase stimulatory beta-adrenergic receptor and two subtypes of muscarinic cholinergic receptors has suggested that these are homologous proteins with several conserved structural and functional features. Whereas the rhodopsin gene consists of five exons interrupted by four introns, surprisingly the human and hamster beta-adrenergic receptor genes contain no introns in either their coding or untranslated sequences. We have cloned and sequenced a DNA fragment in the human genome which cross-hybridizes with a full-length beta 2-adrenergic receptor probe at reduced stringency. Like the beta 2-adrenergic receptor this gene appears to be intronless, containing an uninterrupted long open reading frame which encodes a putative protein with all the expected structural features of a G-protein-coupled receptor.  相似文献   

8.
Renault L  Guibert B  Cherfils J 《Nature》2003,426(6966):525-530
Small GTP-binding (G) proteins are activated by GDP/GTP nucleotide exchange stimulated by guanine nucleotide exchange factors (GEFs). Nucleotide dissociation from small G protein-GEF complexes involves transient GDP-bound intermediates whose structures have never been described. In the case of Arf proteins, small G proteins that regulate membrane traffic in eukaryotic cells, such intermediates can be trapped either by the natural inhibitor brefeldin A or by charge reversal at the catalytic glutamate of the Sec7 domain of their GEFs. Here we report the crystal structures of these intermediates that show that membrane recruitment of Arf and nucleotide dissociation are separate reactions stimulated by Sec7. The reactions proceed through sequential rotations of the Arf.GDP core towards the Sec7 catalytic site, and are blocked by interfacial binding of brefeldin A and unproductive stabilization of GDP by charge reversal. The structural characteristics of the reaction and its modes of inhibition reveal unexplored ways in which to inhibit the activation of small G proteins.  相似文献   

9.
Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1   总被引:76,自引:0,他引:76  
F R Bischoff  H Ponstingl 《Nature》1991,354(6348):80-82
The product of the gene RCC1 (regulator of chromosome condensation) in a BHK cell line is involved in the control of mitotic events. Homologous genes have been found in Xenopus, Drosophila and yeast. A human genomic DNA fragment and complementary DNA that complement a temperature-sensitive mutation of RCC1 in BHK21 cells encode a protein of relative molecular mass 45,000 (Mr 45K) which is located in the nucleus and binds to chromatin. We have recently isolated a protein from HeLa cells that strongly binds an anti-RCC1 antibody and has the same molecular mass, DNA-binding properties, and amino-acid sequence as the 205 residues already identified. HeLa cell RCC1 is complexed to a protein of Mr 25K. We have shown that this 25K protein has a sequence homologous to the translated reading frame of TC4, a cDNA found by screening a human teratocarcinoma cDNA library with oligonucleotides coding for a ras consensus sequence, and that the protein binds GDP and GTP. We have referred to this protein as the Ran protein (ras-related nuclear protein). In addition to the fraction of Ran protein complexed to RCC1, a 25-fold molar excess of the protein over RCC1 was found in the nucleoplasm of HeLa cells. Here we show that RCC1 specifically catalyses the exchange of guanine nucleotides on the Ran protein but not on the protein c-Ha-ras p21 (p21ras).  相似文献   

10.
11.
12.
D C Ogden  S A Siegelbaum  D Colquhoun 《Nature》1981,289(5798):596-598
It is now thought that amine local anaesthetic compounds (procaine, lignocaine and related molecules) depress electrical activity in nerve and muscle cells by binding to sites within ion channels and blocking current flow. Such mechanisms have been proposed to account for the effects of these local anaesthetics on both the voltage-dependent sodium current and the postsynaptic actylcholine (ACh)-activated ionic current. Recently, strong evidence for block of ion channels by cationic drug molecules has been obtained by recording current from single ACh-activated channels in the presence of permanently charged quaternary derivatives of lignocaine. Most amine local anaesthetic compounds are, however, weak bases, present in both charged and uncharged forms at physiological pH, and some question remains as to whether a charged group is essential for blockade of ion channels. To resolve this question, we studied the action of the uncharged local anaesthetic benzocaine (ethyl-4-aminobenzoate) on postsynaptic ACh-activated endplate current and extrajunctional single channel current of frog muscle. We report here evidence that strongly suggests that benzocaine blocks ACh-activated ion channels.  相似文献   

13.
B D Gomperts 《Nature》1983,306(5938):64-66
The introduction of impermeant aqueous solutes into individual cells by microinjection has long been established but the difficulties of manipulating the cytosol composition of large populations of microscopic cells have only recently been overcome. Successful techniques include a dielectric breakdown procedure, treatment with micromolar concentrations of ATP4- (ref. 7) and also with very small (that is nonagglutinating, non-fusogenic) amounts of Sendai virus. So far, attention has been concentrated on the behaviour of the cells (generally their response to applied Ca2+ buffers) at the time when the membrane permeability lesions are open, and thus cytosol and external medium are in contact. I now report a novel technique for monitoring the state of molecular solute permeability in cell membranes and show that the lesions generated by ATP4- in the membrane of mast cells can be closed within seconds of adding Mg2+ so that a cycle of permeabilization and resealing can be used to explore the effect of foreign compounds trapped in the cytosol of effectively intact cells. I show that non-hydrolysable GTP analogues, introduced into the cytosol of mast cells, cause them to undergo exocytotic secretion in response to addition of extracellular Ca2+. This finding is discussed in the light of previous experience relating guanine nucleotide regulatory proteins as intermediaries between receptors and the transducers which they control.  相似文献   

14.
M J Hart  A Eva  T Evans  S A Aaronson  R A Cerione 《Nature》1991,354(6351):311-314
THE superfamily of low molecular mass GTP-binding proteins, for which the ras proteins are prototypes, has been implicated in the regulation of diverse biological activities including protein trafficking, secretion, and cell growth and differentiation. One member of this family, CDC42Hs (originally referred to as Gp or G25K), seems to be the human homologue of the Saccharomyces cerevisiae cell-division-cycle protein, CDC42Sc. A second S. cerevisiae protein, CDC24, which is known from complementation studies to act with CDC42Sc to regulate the development of normal cell shape and the selection of nonrandom budding sites in yeast, contains a region with sequence similarity to the dbl oncogene product. Here we show that dbl specifically catalyses the dissociation of GDP from CDC42Hs and thereby qualifies as a highly selective guanine nucleotide exchange factor for the GTP-binding protein. Although guanine nucleotide exchange activities have been previously described for other members of the Ras-related GTP-binding protein family, this is the first demonstration, to our knowledge, of the involvement of a human oncogenic protein in catalysing exchange activity.  相似文献   

15.
16.
P Gardner  D C Ogden  D Colquhoun 《Nature》1984,309(5964):160-162
Hypotheses concerning the mechanism by which acetylcholine-like agonists cause ion channels to open often suppose that the receptor-ionophore complex can exist in either of two discrete conformations, open and shut. On the basis of noise analysis it has been reported that certain agonists open ion channels of lower conductance than usual, though many potent agonists give similar conductances, and hence that differences in the conductance of ion channels opened by different agonists may contribute to differences in efficacy. Here we have reinvestigated this question by recording single ion channel currents evoked by acetylcholine-like agonists on embryonic rat muscle in tissue culture and on adult frog muscle endplate. Ten different agonists (Fig. 1) were tested, including several that noise analysis has suggested have a low conductance. The single-channel conductance was found to be the same, within a few per cent, for all 10 agonists. It seems that noise analysis has given erroneously low conductances in some cases. Therefore efficacy differences do not depend on differences in single-channel conductance evoked by various agonists but presumably on the position of the open-shunt equilibrium of the agonist-channel complexes.  相似文献   

17.
B Martinac  J Adler  C Kung 《Nature》1990,348(6298):261-263
Mechanosensitive channels have been found in more than 30 cell types, including bacterial, yeast, plant and animal cells. Whether tension is transferred to the channel through the lipid bilayer and/or underlying cytoskeleton is not clear. Using the patch-clamp method, we found that amphipathic compounds, which are molecules having hydrophobic and hydrophilic character with positive, negative or no net electric charge at pH 7, could slowly activate the mechanosensitive channels of giant Escherichia coli spheroplasts, with effectiveness proportional to their lipid solubility. The cationic or anionic amphipaths were able to compensate for each other's effect. After a channel was activated by an amphipath of one charge, if that amphipath was gradually replaced by one with the opposite charge, the channel first inactivated before reactivating. These findings support the view that the mechanical gating force can come from the surrounding lipids.  相似文献   

18.
H Marrero  M L Astion  J A Coles  R K Orkand 《Nature》1989,339(6223):378-380
The functions of glial cells in the nervous system are not well defined, with the exception of myelin production by oligodendrocytes, uptake of amino-acid synaptic transmitters, and a contribution to extracellular potassium homeostasis. Neuroglia have receptors for neurotransmitters which may be involved in neuron-glia interactions. Recent studies have demonstrated voltage-gated ion channels in glial membranes. In a study of the optic nerve of the frog, small areas of the surface were examined with the loose patch-clamp method, and voltage-gated Na+ and K+ channels, presumably located in the membranes of the astrocytes forming the glia limitans, were identified. We now report that nerve impulses in the axons of the frog optic nerve transiently alter the properties of the voltage-dependent membrane channels of the surface glial cells (astrocytes), a demonstration of a new form of neuron-glia interaction.  相似文献   

19.
J Lechleiter  S Girard  D Clapham  E Peralta 《Nature》1991,350(6318):505-508
Calcium release from intracellular stores is a point of convergence for a variety of receptors involved in cell signaling. Consequently, the mechanism(s) by which cells differentiate between individual receptor signals is central to transmembrane communication. There are significant differences in timing and magnitude of Ca2+ release stimulated by the m2 and m3 muscarinic acetylcholine receptors. The m2 receptors couple to a pertussis toxin-sensitive G protein to activate phosphatidyl inositol hydrolysis weakly and to stimulate small, delayed and oscillatory chloride currents. In contrast, m3 receptors potently activate phosphatidyl inositol hydrolysis and stimulate large, rapid and transient chloride currents by a pertussis toxin-insensitive G protein pathway. Using confocal microscopy, we now show that the m2- and m3-coupled Ca2+ release pathways can also be spatially distinguished. At submaximal acetylcholine concentrations, both receptors stimulated pulses of Ca2+ release from discrete foci in random, periodic and frequently bursting patterns of activity. But maximal stimulation of m2 receptors increased the number of focal release sites, whereas m3 receptors invariably evoked a Ca2+ wave propagating rapidly just beneath the plasma membrane surface. Analysis of pertussis toxin sensitivity and hybrid m2-m3 muscarinic acetylcholine receptors confirmed that these Ca2+ release patterns represent distinct cell signalling pathways.  相似文献   

20.
T Kamata  J R Feramisco 《Nature》1984,310(5973):147-150
Several human tumour cell lines contain genes that can transform NIH 3T3 cells into malignant cells. Certain genes have been classified as members of the ras oncogene family, namely, Ha-ras, Ki-ras or N-ras. The proteins encoded by the ras family are generally small (Ha-ras, for example, encodes a protein of molecular weight 21,000 named p21), and are associated with the inner surface of the plasma membrane. The only known biochemical property common to all forms of the ras proteins is the ability to bind guanine nucleotides, a property which may be closely related to the transforming ability of ras proteins. A GTP-dependent, apparent autophosphorylation (on threonine 59) activity has been identified only in the case of the v-Ha-ras protein. Although the role of these biochemical activities in the transformation process remains unclear, we have initiated studies to determine the possible biochemical interactions of ras proteins with other membrane components. We report here the evidence that epidermal growth factor enhances the guanine nucleotide binding activity of activated c-Ha-ras or v-Ha-ras p21, and phosphorylation of v-Ha-ras p21, suggesting that some mitogenic growth factors may regulate those activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号