首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CH2自由基是烃类燃烧过程中产生的重要物质,NO是主要的环境污染物.研究二之间的反应具有重要的现实意义.用从头算(ab initio)方法从理论上对CH2和NO的反应进行研究.采用G2MP2方法计算各反应通道上所有驻点的构型参数、振动频率和高级能量.根据相对能量绘制的势能剖面图详细给出了CH2和NO的反应机理。反应中,NO横向进攻CH2中心形成富能中间体H2CNO(IM1),而后经复杂的异构化或解离途径生成产物。计算的各个通道的反应热与实验结果符合较好,根据势能面,预测生成CO NH2和H HNCO是反应的主要通道,这与实验事实相一致。  相似文献   

2.
应用量子化学密度泛函理论(DFT)对亚乙烯基自由基(.C2H2)和3O2的反应历程进行计算,在B3LYP/6-311++G(d,p)基组水平下优化了过渡态,中间体和产物的几何构型,并对其振动频率和零点振动能(EZPV)进行计算.结果表明,该反应是一个复杂反应,反应物3O2进攻.C2H2的边端C形成了加合产物H2CCOO(INT1),由H2CCOO经过不同的反应通道得到了不同的产物P1(CH2+CO2),P2(CH2CO+O),P3(CH2O+CO),P4(HCO+HCO),P5(H+CO+HCO),与实验所得的反应产物一致.H2CCOO(INT1)通过异构化生成的H2CC(O)O(INT2),以及进一步生成的H2C(O)CO(INT4)是反应能够进行并生成P3,P4,P5的关键.P1为主要产物,而生成产物P3,P4,P5的多条通道中也存在主要反应通道.  相似文献   

3.
用密度泛函理论(DFT)中的B3LYP方法,在6-311++G(d,p)基组水平上研究了CH2与OH自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,经振动分析证实了中间体和过渡态的真实性,并在G3水平上计算了它们的能量.研究结果表明,OH自由基与CH2自由基反应为多通道多步反应过程,从反应的活化能来看,每一条通道都是可行的,比较反应通道的控制步骤的反应活化能发现,CH2与OH自由基反应主要通道是IMl→TSl→H2CO+H.  相似文献   

4.
以葡萄糖在超临界水气化制氢中的中间产物甲醛为对象,研究了其在超临界水中的气化过程.结果表明:甲醛气化生成的气体产物主要成分是H2、CO2和CO,液体产物主要成分是CH3OH、CH3OCH2OCH3和CH3OOCH;反应温度、压力、时间以及物料含量对反应产物存在影响,其中压力和物料含量对气化过程影响较大;低压下低温有利于H2生成,高压下高温更有利于H2生成;反应时间长、甲醛初始含量低亦有利于H2的生成.根据气化后的气、液态产物及其含量,确定了甲醛在超临界水中气化转换的路径.  相似文献   

5.
采用量子化学密度泛函理论与从头算分子轨道理论研究了CH自由基与NO反应的机理,在B3LYP/6-311++G(d,p)水平上优化了反应过程中反应物、中间体、过渡态和产物的几何构型,并在G3水平上计算了它们的能量,同时对它们进行了振动分析,以确定中间体和过渡态的真实性.从对CH自由基与NO反应机理的研究结果看,CH自由基与NO反应为多通道反应.可能的产物是OH+CN、0+HCN、H+CNO、H+NCO、N+HCO、NH+CO,这些产物与实验检测到的结果相吻合.理论分析表明,反应通道CH+NO→IM6→TS8→IM7→TS9→N+HCO控制步骤的活化能最低(144.6kJ/mol),为主要反应通道.同时理论计算得到的各通道反应热与实验值一致,可以说明研究结果是比较可靠的.  相似文献   

6.
为了研究层流预混火焰中二甲醚的氧化分解路径,利用同步辐射真空紫外光电离及分子束取样质谱技术,测量了二甲醚浓燃火焰主要物种及主要中间物种的摩尔分数空间分布曲线。基于典型的二甲醚燃烧化学反应机理和CHEMKIN化学反应动力学模拟软件,对相同条件的一维平面火焰进行了数值模拟,结合试验及数值模拟结果对二甲醚的氧化分解路径进行了分析。研究结果表明:甲醛和甲基是二甲醚燃烧过程中最主要的C1中间物种,乙烯和乙炔是主要C2中间物种;浓燃条件下,二甲醚主要通过脱氢反应消耗,使二甲醚产生脱氢反应的最主要的原子是H,其次是OH、CH3和O;二甲醚的脱氢产物甲氧基甲基极不稳定,在火焰中一经生成马上就被消耗掉,试验中没有观测到它的存在;CH2O脱氢生成HCO,HCO脱氢生成CO,CO再被OH氧化成CO2;反应CO+OHCO2+H是火焰后期生成CO2的主要方式。  相似文献   

7.
为揭示HCNO与OH自由基反应的微观机理,采用密度泛函理论(DFT)在B3LYP/6—311G(d,P)水平上对该体系可能出现的7个反应通道上各反应物、中间体、过渡态和产物的几何构型进行了搜索、几何全优化和振动分析验证,并在QCISD(T)/6-311G(d,P)水平上进行了能量校正.计算结果表明:各反应通道均为多步过程,反应的主产物为H2NO+CO和HCO+HNO,它们分别经历通道3和通道7而最后生成.  相似文献   

8.
用密度泛函B3LYP/6-311++G^**方法和G2(MP2)、G383理论研究了CH2CO与OH自由基反应的微观机理,揭示了该反应的加成-消除机理,结果表明直接吸氢机理不存在.并发现生成CH2OH+CO的反应是主反应通道.理论计算结果较好地解释了实验观察到的主要产物和副产物并存的现象.  相似文献   

9.
H2CO与HO自由基反应机理的理论研究   总被引:3,自引:1,他引:2  
采用密度泛函理论(DFT)的B3LYP方法,在6-311 G(d,p)基组水平上研究了H2CO与HO自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型.研究发现:H2CO与HO自由基反应的两条反应通道都是可行的,其生成产物是H2,CO2和H原子.从构型参数看,对于经典分子的计算结果与文献值很接近,表明计算的结果是可靠的.  相似文献   

10.
CH3与HO2自由基反应途径及位垒的计算研究   总被引:1,自引:1,他引:0  
采用量子化学从头算中的QCISD方法,在cc-pvdz和cc-pvtz基组水平上对CH3 HO2反应机理进行了计算研究,结果表明,CH3与HO2双分子自由基反应是一个复杂反应,反应可以在不同的电子态下经数个产物通道进行.在HOz自由基上的H直接转移到甲基自由基生成CH4 O2的反应途径上,存在一个低于反应物能量8.49kJ/mol的分子复合物.直接氢转移反应的计算位垒为3.07kJ/mol。与实验值零位垒相近.由CH3OOH生成CH2O和H2O反应的过渡态呈四元环构型,且具有Cs对称性,基于IRC计算,证明了该过渡态引导CH3OOH生成CH2O和H2O的反应机理是一个分子内氢迁移和H2O消除的协同过程.对由反应物生成CH3O和OH自由基的反应,除存在协同机理外,还提出了另一可能的通道,即反应物沿单线态位能面经过一个分步反应完成.也即反应物先经无位垒过程产生CH3OOH及其异构体CH3(O)OH,其中CH3(O)OH发生解离反应生成CH3OH和单线态原子氧,然后原子氧转化为三线态再与CH3OH进行反应生成CH3O和OH.  相似文献   

11.
采用二级微扰理论,在MP2(full)/6—311++G(d,p)理论水平上对O(^3P)与CH3CF=CH2气相反应在三重态势能面上可能的反应机理进行了理论研究,全参数优化了反应过程中反应物、中间体、过渡态和产物等各物种的几何构型,并进行了频率计算.在G3MP2水平上计算了各驻点的能量.计算结果表明,在298.15K下,经过IM2生成CH3+CH2COF产物通道的能垒较低,为主反应通道,而从IM1出发生成H+CH3CFCHO和从IM2出发生成CH2+CH3COF是次要的产物通道.利用经Wigner校正的Eyring过渡态理论计算了在298.15~1500K温度范围内,1个大气压下该反应的速率常数.结果表明,整个反应的速率常数受温度的影响较为复杂.  相似文献   

12.
CH自由基与HNCO反应机理的理论研究   总被引:2,自引:1,他引:2  
用MP2方法,在6-311++G(d,p)基组水平上研究了CH自由基与HNCO的反应机理.全参数优化了反应过程中反应物、中间体、过渡态和产物,选用更高水平的QCISD(T)/6-311++G(d,p)和G3方法计算了相应的能量.研究结果表明:CH自由基与HNCO反应存在4条反应通道,分别为(1)CH+HNCO→IM1→TS1→CH2+NCO;(2)CH+HNCO→IM1→TS2→IM2→TS3→H2CN+CO;(3)CH+HNCO→IM(cis)→TS(cis)→HCNH+CO;(4)CH+HNCO→IM(cis)→TS(cis-trans)→IM(trans)→TS(trans)→HCNH+CO.其中通道(3)具有相对较低的活化能,且为放热通道,是反应的主要通道.  相似文献   

13.
采用DFT(UB3LYP)方法,在6—311++G^**基组水平上,计算研究了硝基甲烷2种带电结构[CH3NO2]^+和[CH3NO2]^-分子内H原子向O原子转移后的O-N键的解离机理和反应位垒.结果表明,[CH3NO2]^+发生氢转移后,O-N键的断裂是2步反应,第一步是分子内的H原子转移到O原子上,生成中间体[CH2N(OH)O]^+,反应位垒为106.5kJ/mol;第二步是中间体中O-N键断裂,这步的反应位垒为105.5kJ/mol,理论计算得出的产物带电状态与实验一致.[CH3NO2]^-中H原子向O原子转移及O-N键断裂反应一步完成,生成一氢键复合物(H-Complex),该反应位垒为176.2kJ/mol,H—Complex进一步解离成CH2NO自由基和OH^-,或是OH自由基和[CH2NO]^-.  相似文献   

14.
应用量子化学从头算和密度泛函理论(DFT),对CS自由基与O2分子反应的单、三重态势能面进行了研究.在UB3LYP/6—311G(d,p)水平上优化了反应通道上各驻点的几何构型.在OCSD(T)/6—311G(d,p)水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明:主要反应通道在三重态势能面中.主要产物是P3(OCS+^3O),次要产物是P1(CO+SO).  相似文献   

15.
基于群论理论和原子分子反应静力学正确判断了H2O(X^1A1)离解极限。采用密度泛函B31yp/6-311++g^**方法优化出H2O(X^1A1)了平衡几何、离解能和振动频率.考虑核振动能量,修正Bom—Oppenheimer近似理论下的分子势能函数,计算了H2O(X^1A1)分子的二阶力常数、正则振动频率和零点能。使用多体项展式理论方法导出了基态H2O(X^1A1)分子非Bom—Oppenheimer近似理论下的分析势能函数,然后根据该修正势能函数绘出等值势能图,并讨论了H+OH反应和O+H2反应的势能面静态特征。结果表明:在H+OH—H2O通道上反应为无阈能反应,而O+HH→H2O存在鞍点,反应具有一定的方向性,以垂直H—H键的方向最为有利。  相似文献   

16.
采用Gaussian09ONIOM分层计算方法,研究了全氟辛酸(C7F15COOH)热分解消除HF的反应历程,在B3LYP/aug-cc-pvtz//B3LYP/6-31G(d,p)+ZPVE水平下,得到7条可能的反应通道.计算结果表明,全氟辛酸的热降解反应可以通过六元环反应机理、五元环反应机理、直接脱CO、CO2、CF2反应机理平行进行得到产物,其中以五元环过渡态进行反应生成CO、CF3(CF2)5CFO具有相对较低的活化能,为反应的主要通道,生成产物CO2和CF3(CF2)4CF=CF2的产率较低;PFOA的H异构化后经过五元环过渡态消除HF分子并形成环氧中间体,此过程能垒高达183.4kJ/mol,相较于其他各步能垒最高,为整个反应的速控步骤,理论预测的主要产物与实验基本吻合.研究还表明,强酸性条件有利于PFOA的降解.  相似文献   

17.
采用密度泛函DFT(B3LYP)方法,在6311G**,6—311++G**以及cc-pvtz基组水平上,计算了2-硝基丙烯在热解反应过程中反应物、过渡态和中间体的几何结构,研究了各反应沿极小能量途径反应分子几何构型的变化,并通过电子密度拓扑分析,讨论了反应过程中化学键断裂、生成的变化规律.结果表明,2-硝基丙烯的热解反应存在2种反应机理,一是甲基上的H原子进攻硝基上的O原子直接生成CH2CCH2和HNO2,反应位垒为199.6kJ/mol;二是O原子进攻亚甲基C原子首先生成四元环状中间体,住垒为200.3kJ/mol,环状中间体进一步发生C—C键和N-0断裂生成CH2CNO和CH2O,此反应是一个一步反应,位垒为144.7M/mol,所得环状中间体的分解反应机理与现有的AM1的研究结果不同.  相似文献   

18.
利用量子化学理论方法。研究了与大气臭氧层损耗密切相关的自由基反应NH2+ClO的微观机理。在密度泛函B3LYP/6-311+G(d,p)水平上优化得到反应路径上的反应物,过渡态,中间体和产物的几何构型,并通过振动频率分析对过渡态和中间体进行了确认。在高级电子相关组态相互作用QCISD(T)/6-311+G(d,p)水平上进行了单点能计算,得到了反应体系的势能面信息,结果表明,该反应经过缔合、H-转移和离解等过程,最终可以得到五种产物,分别为H2NO+Cl,H2NClO,HCl+HNO,H2+NO+Cl和NH+HClO,由于形成产物H2NO+Cl的活化势垒较低,因而是主要反应通道,而形成产物NH+HClO的通道从动力学上看是最不利的。  相似文献   

19.
应用密度泛函理论研究了CHOCHO与O2在单重态势能面上的反应机理.在M06/6-31G(d,p)水平上优化了各反应通道上各驻点(反应物、中间体、过渡态、产物)的几何构型,IRC计算证实了中间体和过渡态的真实性和相互连接关系,并计算了它们的振动频率和零点能,通过零点能校正计算了各反应通道的活化能.计算结果表明,乙二醛与氧气反应,存在生成乙醛酸和甲酸两条反应通道,两条通道的速控步骤的能垒分别为295.4kJ/mol和274.2kJ/mol,说明乙二醛分子很稳定,常温下很难被氧化成乙醛酸.相对而言,生成甲酸和CO2的通道为主反应通道.对各个反应通道分析可知,乙二醛生成乙醛酸的关键在于CHOCHO分子中的H原子转移至O2上的反应,由于有氧自由基的生成,氧化反应很难控制,生成的乙醛酸易被氧自由基继续氧化生成草酸.而在生成甲酸通道中,C-C键的断裂会造成甲酸和CO2的产生.  相似文献   

20.
CH2CO+CN的多通道反应的理论研究   总被引:1,自引:0,他引:1  
用密度泛函B3LYP/6-311G^**方法和CCSD(T)理论研究了CH2CO与CN自由基反应的微观机理,揭示了该反应存在加成-消除机理和直接吸氢机理.研究结果表明,生成CH2CN(CH2NC)+CO的反应是主反应通道,且理论计算结果和反应速率常数的计算结果较好地解释了实验中观察到的主要产物和副产物并存的现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号