首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
研究了Alcalase蛋白酶对大豆分离蛋白的水解作用,分析了pH、温度、酶浓度、底物浓度和水解时间对大豆分离蛋白酶解的影响,通过单因素分析、正交试验,确定了Alcalase蛋白酶水解大豆分离蛋白的最佳水解条件,即pH8.0,温度60℃,酶浓度1000U/g,底物浓度3%,水解时间2h.  相似文献   

2.
研究了中性蛋白酶和木瓜蛋白酶对鹅血液的水解作用,并分析了酶用量、温度、时间、pH值等因素对鹅血酶水解的影响。结果表明,双酶水解效果较好,确定了其最适宜的酶解条件:中性蛋白酶,酶底物浓度比(E/S)为4000U/g,pH值为7.0,温度为55℃,时间为5h;木瓜蛋白酶,酶底物浓度比(E/S)为6000U/g,pH值为7.5,温度为50℃,时间为4h。  相似文献   

3.
从底物浓度、pH值、酶解温度、加酶量、酶解促进剂和酶解时间等方面研究了碱性蛋白酶Alcalase和木瓜蛋白酶复合对全脂大豆粉酶解的影响,并运用单因素和正交试验设计优化酶解条件.结果表明,底物体积分数4.5%、pH值8.5、温度60℃、复合酶加酶量(碱性蛋白酶Alcalase与木瓜蛋白酶活力之比为2∶1)2 640 U/g,添加5 mmol/L Mn2+酶解180 min效果较好,水解度达到17.8%.  相似文献   

4.
采用不同蛋白酶对鸡骨进行水解制备动物水解蛋白(HAP).结果表明,胰酶、AS.1398中性蛋白酶和Alcalase具有较好的水解效果.通过正交试验,以水解度为指标确定胰酶的优化水解条件为:温度50℃,pH值8.5,酶和底物的比值(E/S)为0.75%,底物浓度5%,水解时间为60 min;AS.1398中性蛋白酶最适水解条件为:温度55℃,pH值7.5,E/S为3%,底物浓度5%,水解时间为60 min;Alcalase酶解的最适水解条件为:温度60℃,pH值8.5,E/S为1%,底物浓度5%,水解时间为60 min.  相似文献   

5.
采用Alcalase碱性蛋白酶酶解蛋清粉制备食源性抗凝血肽。结果表明:底物浓度过大会抑制水解度的增长,底物质量分数为1%时蛋白质完全水解后的产物抗凝血活性最佳;高温和低温均对水解度有影响,低温酶解产物的抗凝血活性较好;pH值对水解度的影响与Alcalase的最适pH值有关;pH值为7时,抗凝血活性最好;酶/底物浓度增大,但底物不变的情况下,对水解度的提高不明显,酶/底物浓度过大,导致抗凝血活性降低。考虑交互作用经试验优化设计确定的酶解最佳工艺参数为:底物质量分数为1%,酶解温度为50 ℃,酶/底物质量分数为5%,酶解pH为8。在该条件下水解2 h,凝血抑制率达到68.92%。  相似文献   

6.
目的:乳清蛋白是牦牛乳中的重要成分,其经酶解制备的乳源性ACE抑制肽以安全性高和无副作用等优点在高血压的防治中具有重要的研究和应用价值.本实验研究利用乳清蛋白制备ACE抑制肽的工艺技术.方法:本实验对从耗牛乳中提取的乳清蛋白,分别根据碱性蛋白酶、中性蛋白酶、木瓜蛋白酶、胰蛋白酶及胃蛋白酶各自的最适pH及温度,采用酶解法制备ACE抑制肽,以ACE抑制活性为指标初步筛选出最佳水解酶,并探究最佳酶水解乳清蛋白制备ACE抑制肽的最佳反应条件.结果:碱性蛋白酶为制备ACE抑制肽的最佳水解酶,英最佳反应条件为:pH8.5、温度60℃、E/S为5.5%、水解6h.制备的ACE抑制肽抑制率可达到85.2%.结论:碱性蛋白酶为最佳酶选,用碱性蛋白酶制备的ACE抑制肽体外抑制率较高,符合工业生产要求.这为进一步优化乳清蛋白降血压肽的制备工艺提供依据.  相似文献   

7.
pH渐变条件下双酶协同水解大豆蛋白   总被引:2,自引:0,他引:2  
研究了在没有外加碱的pH渐变条件下.用枯草杆菌碱性蛋白酶(Alcalase 2.4L,酶活力2.4AU/g)和黑曲霉酸性蛋白酶(酶活力3000u/g)双酶协同水解从大豆蛋白制备寡肽(10个氨基酸以下的肽)水解物的可行性.考察了单酶单因素水解条件、双酶加入方式对大豆蛋白降解率和蛋白质水解度的影响,并在此基础上通过正交试验进一步优化出双酶一次性投料方案下水解大豆蛋白的最佳条件:水解温度为60℃.碱性蛋白酶加入量为每g蛋白15μL,酸性蛋白酶加入量为6%,底物浓度为40g/L,水解时间为18h.在上述最佳条件下,大豆蛋白的降解率可达76%,蛋白质的水解度可达26%,水解物中相对分子质量小于1350的寡肽达到了66%.结果表明,在不外加碱的条件下,采用双酶协同水解方法能够显著提高大豆蛋白降解率以及蛋白质水解度.  相似文献   

8.
《潍坊学院学报》2015,(6):21-23
采用枯草杆菌碱性蛋白酶Alcalase(标注酶活力2.4Au/g)作为水解酶对大豆蛋白进行水解,得到大豆多肽溶液。以大豆蛋白的水解度(DH)来表征大豆蛋白水解反应进行的程度。选择水解反应温度、pH值、酶浓度作为三个影响因素分别取三个水平,以水解度为指标进行三因素三水平正交实验。实验结果得到的最佳实验条件为底物浓度为8%,酶浓度(E/S)为3.6Au/100g底物,温度T60℃以及pH为8.0。  相似文献   

9.
用木瓜蛋白酶和碱性蛋白酶顺序水解的方法制备绿豆多肽: 先对水解体系的pH值、 碱性蛋白酶与绿豆分离蛋白的质量比(E/S比)、 水解温度、 绿豆分离蛋白质量分数进行单因素实验; 再在单因素实验基础上, 采用4因素3水平正交实验设计优化碱性蛋白酶水解条件. 获得最佳水解条件为: 绿豆分离蛋白的质量分数为8%, 水解温度为55 ℃, E/S比为8%, pH=9.0. 在最佳顺序水解条件下, 绿豆分离蛋白的水解度达32.58%.  相似文献   

10.
酶法分步水解黄鳝肉制备黄鳝低肽研究   总被引:1,自引:0,他引:1  
以碱性蛋白酶、复合风味酶对黄鳝肉进行分步酶水解,所得水解液水解程度较高,且有良好风味。在物料液固比为3.12:1,两种酶的最适pH、温度条件下,Alcalase碱性酶处理的适宜参数为酶反应时间93min、加酶量2500(U/g样);风味酶复合风味酶处理的适宜参数为:酶反应时间45min、加酶量1000(U/g样)。在此条件下,氨基氮得率为0.75(g/100g样),肽分子平均相对分子质量为542。  相似文献   

11.
仅就弱酸弱碱中(NH4)2CO3与NH4HCO3水解相对强度,做了较为深入的研究。研究发现水解相对强度是很有规律的,在浓度相同的情况下,其水解相对强度为一定值。文章中还讨论了AgCl、AgBr的溶解度在溶液中的变化,与其水解相对强度的相关性。  相似文献   

12.
金属离子水解规律的探讨   总被引:1,自引:0,他引:1  
提出了一个新的金属离子水解模型,拟定了从理论上计算金属离子水解常数的公式:pK_H=k((r/R)z)+b计算结果表明,理论值与实验值符合较好。63个离子的 pK_H_1,总误差∑△=26.18,平均误差±0.42;30个离子的 pK_H_2,总误差∑△=19.57,平均误差±0.65;28个离子的 pK_H_3,总误差∑△=20.5,平均误差±0.79。  相似文献   

13.
鲢鱼副产物蛋白酶解条件的优化   总被引:1,自引:0,他引:1  
本文以鲢鱼副产物中蛋白质为酶解底物,采用三因素二次旋转正交回归设计,研究水解反应中酶—底物浓度比([E]/[S])、pH、温度(T)三个因素对蛋白质回收率的影响,得出最优水解条件为:[E]/[S]=3。33%、PH=8。54、T=58℃,蛋白回收率〉75%。  相似文献   

14.
分析了蛋白质水解度参数在监测蛋白质酶解过程中的不足,并根据蛋白质酶解过程特点提出了酶解度的概念与测定方法。将酶解度定义为一个比值,用于描述蛋白质酶解体系中新增肽链数相对于原有肽链数的变化,可以有效反映酶对蛋白质的酶切过程。根据酶解度的定义,只要分别测定出酶解前的体系中肽链数目与酶解后体系中的肽链增量,通过计算两者的比值就可以计算出该条件下的酶解度。体系中的肽链数目可以通过甲醛滴定法测定出体系中的游离氨基数与新增自由氨基数来计算。  相似文献   

15.
运用NMR技术对叔丁基氯在60%丙酮水溶液中的水解动力学机理进行了研究。该水解反应为准一级反应,其速率常数k=(1.34±0.2)×10~(-4)/s,反应的半衰期为τ_(1/2)=k_1~(-1) In2=5284s。  相似文献   

16.
玉米秸秆水解的酶法与稀酸法比较   总被引:6,自引:0,他引:6  
探讨玉米秸秆在纤维素酶及稀酸作用下的水解方法,并从水解影响因素(水解时间、温度、底物浓度等)及水解机理上,比较了两种纤维素酶与稀硫酸对玉米秸秆水解特性.结果表明:由于酶和酸的水解机理不同,对玉米秸秆的水解影响也不一样,酶水解速度慢,水解得率高,条件温和;稀酸水解速度快,水解得率低,对设备要求高.如果酸和酶结合,则玉米秸秆水解得率有很大的提高.  相似文献   

17.
在用FeCl_3溶液水解制备Fe(OH)_3溶胶的教学实验中,通过计算控制pH值范围于1.38~2,13之间,可确保学生获得满意的实验效果。  相似文献   

18.
从有利教学出发,系统地归纳了无机化合物水解反应的基本规律。  相似文献   

19.
一次氧气对氢氧焰水解制备纳米TiO_2颗粒的影响   总被引:1,自引:0,他引:1  
在氢氧焰燃烧合成细米TiO2时,一次氧气浓度直接影响燃烧过程性质、火焰的特征。通过调节一次氧气浓度,可以得到大小、形貌和晶型不同的纳米颗粒。在未达到化学计量比以前,φO2增加,二氧化钛一次粒子的粒度减小,粒度分布变窄,颗粒中的金红石含量显著下降。当四氯化钛进料浓度为0.47mol/m3,φO2由0增加到0.10时,纳米TiO2颗粒平均粒径由70nm降到32nm,金红石的质量分数由0.93降到0.03。水解制备的TiO2颗粒为球形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号