首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用温度、时间、pH、超声频率4个考察因素设计正交试验,研究其对水溶液中烯丙基异硫氰酸酯稳定性的影响.将异硫氰酸酯溶解在含有少量甲醇的水溶液中,通过HPLC检测烯丙基异硫氰酸酯的浓度变化,来考察各因素对其稳定性影响程度.结果表明,时间因素对烯丙基异硫氰酸酯降解的影响程度最大,其次是超声频率、温度、pH.对降解后的混合物...  相似文献   

2.
The nervous system senses peripheral damage through nociceptive neurons that transmit a pain signal. TRPA1 is a member of the Transient Receptor Potential (TRP) family of ion channels and is expressed in nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent natural compounds, and environmental irritants. How such diverse stimuli activate TRPA1 is not known. We observed that most compounds known to activate TRPA1 are able to covalently bind cysteine residues. Here we use click chemistry to show that derivatives of two such compounds, mustard oil and cinnamaldehyde, covalently bind mouse TRPA1. Structurally unrelated cysteine-modifying agents such as iodoacetamide (IA) and (2-aminoethyl)methanethiosulphonate (MTSEA) also bind and activate TRPA1. We identified by mass spectrometry fourteen cytosolic TRPA1 cysteines labelled by IA, three of which are required for normal channel function. In excised patches, reactive compounds activated TRPA1 currents that were maintained at least 10 min after washout of the compound in calcium-free solutions. Finally, activation of TRPA1 by disulphide-bond-forming MTSEA is blocked by the reducing agent dithiothreitol (DTT). Collectively, our data indicate that covalent modification of reactive cysteines within TRPA1 can cause channel activation, rapidly signalling potential tissue damage through the pain pathway.  相似文献   

3.
我们用对苯磺酸钠偶氮β-萘胺和间氨基苯磺酸钠分别和烯丙基芥子油作用合成了两种新的硫脲化合物N—烯丙基—N′—(1—对苯磺酸钠偶氮萘—2)硫脲及N—烯丙基—N′—(间苯磺酸钠)硫脲,并对它们的一些性质作了初步研究。  相似文献   

4.
Discriminating among sensory stimuli is critical for animal survival. This discrimination is particularly essential when evaluating whether a stimulus is noxious or innocuous. From insects to humans, transient receptor potential (TRP) channels are key transducers of thermal, chemical and other sensory cues. Many TRPs are multimodal receptors that respond to diverse stimuli, but how animals distinguish sensory inputs activating the same TRP is largely unknown. Here we determine how stimuli activating Drosophila TRPA1 are discriminated. Although Drosophila TRPA1 responds to both noxious chemicals and innocuous warming, we find that TRPA1-expressing chemosensory neurons respond to chemicals but not warmth, a specificity conferred by a chemosensory-specific TRPA1 isoform with reduced thermosensitivity compared to the previously described isoform. At the molecular level, this reduction results from a unique region that robustly reduces the channel's thermosensitivity. Cell-type segregation of TRPA1 activity is critical: when the thermosensory isoform is expressed in chemosensors, flies respond to innocuous warming with regurgitation, a nocifensive response. TRPA1 isoform diversity is conserved in malaria mosquitoes, indicating that similar mechanisms may allow discrimination of host-derived warmth--an attractant--from chemical repellents. These findings indicate that reducing thermosensitivity can be critical for TRP channel functional diversification, facilitating their use in contexts in which thermal sensitivity can be maladaptive.  相似文献   

5.
Kim J  Chung YD  Park DY  Choi S  Shin DW  Soh H  Lee HW  Son W  Yim J  Park CS  Kernan MJ  Kim C 《Nature》2003,424(6944):81-84
The many types of insect ear share a common sensory element, the chordotonal organ, in which sound-induced antennal or tympanal vibrations are transmitted to ciliated sensory neurons and transduced to receptor potentials. However, the molecular identity of the transducing ion channels in chordotonal neurons, or in any auditory system, is still unknown. Drosophila that are mutant for NOMPC, a transient receptor potential (TRP) superfamily ion channel, lack receptor potentials and currents in tactile bristles but retain most of the antennal sound-evoked response, suggesting that a different channel is the primary transducer in chordotonal organs. Here we describe the Drosophila Nanchung (Nan) protein, an ion channel subunit similar to vanilloid-receptor-related (TRPV) channels of the TRP superfamily. Nan mediates hypo-osmotically activated calcium influx and cation currents in cultured cells. It is expressed in vivo exclusively in chordotonal neurons and is localized to their sensory cilia. Antennal sound-evoked potentials are completely absent in mutants lacking Nan, showing that it is an essential component of the chordotonal mechanotransducer.  相似文献   

6.
Bites and stings from venomous creatures can produce pain and inflammation as part of their defensive strategy to ward off predators or competitors. Molecules accounting for lethal effects of venoms have been extensively characterized, but less is known about the mechanisms by which they produce pain. Venoms from spiders, snakes, cone snails or scorpions contain a pharmacopoeia of peptide toxins that block receptor or channel activation as a means of producing shock, paralysis or death. We examined whether these venoms also contain toxins that activate (rather than inhibit) excitatory channels on somatosensory neurons to produce a noxious sensation in mammals. Here we show that venom from a tarantula that is native to the West Indies contains three inhibitor cysteine knot (ICK) peptides that target the capsaicin receptor (TRPV1), an excitatory channel expressed by sensory neurons of the pain pathway. In contrast with the predominant role of ICK toxins as channel inhibitors, these previously unknown 'vanillotoxins' function as TRPV1 agonists, providing new tools for understanding mechanisms of TRP channel gating. Some vanillotoxins also inhibit voltage-gated potassium channels, supporting potential similarities between TRP and voltage-gated channel structures. TRP channels can now be included among the targets of peptide toxins, showing that animals, like plants (for example, chilli peppers), avert predators by activating TRP channels on sensory nerve fibres to elicit pain and inflammation.  相似文献   

7.
The volatiles, absorbed by Porapak Q and eluted by hexane, from Chinese cabbage, Brassica campestris chinesis (L.) Makino. var. communis Tsen et Lee, have been identified as allyl isothiocyanate, Z-3-hexenyl acetate, 3,7-dimethyl-1,3,6-octatriene, 2,5-hexanediol, Z-3-hexen-1-ol, nonanol, b-myrcene, a-pinene, E-2-hexen-1-ol, D-limonene, Z-3-hexenyl propanoate, linalool, geraniol, E-4-hexen-1-ol, Z-3-hexenyl isovalerate, a-terpinene, b-caryophyllene, 3-carene and a-caryophyllene, by their mass spectra and retention times in comparison with authentic samples. The first five chemicals are the main components. All components can elicite electroantennogram (EAG) responses of diamondback moth (DBM), Plutella xylostella, in which allyl isothiocyanate and C6 alcohols and esters, i.e. Z-3-hexen-1-ol, E-2-hexen-1-ol, E-4-hexen-1-ol, Z-3-hexenyl isovalerate and 2,5-hexanediol elicite stronger EAG responses than other components, and EAG responses of female moths to them are slightly larger than those of male moths. However, EAG responses elicited by terpenes are smaller, and EAG responses from females to terpenes are smaller than those from males, but b-myrcene can evoke stronger EAG responses from both females and males. Volatiles from intact Chinese cabbage, allyl isothiocyanate, 2,5-hexanediol and Z-3-hexenyl isovalerate intensely cause DBM directional flying and landing in wind tunnel, in which volatiles from intact Chinese cabbage have the strongest activity, and the next is allyl isothiocyanate. Allyl isothiocyanate is more attractive to females than to males a bit. As for a-terpinene and other subordinate components, EAG and wind tunnel test make sure they have weak activity.  相似文献   

8.
Ai M  Min S  Grosjean Y  Leblanc C  Bell R  Benton R  Suh GS 《Nature》2010,468(7324):691-695
The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery.  相似文献   

9.
Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.  相似文献   

10.
Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel--TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)--is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below approximately 26 degrees C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 degrees C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.  相似文献   

11.
McKemy DD  Neuhausser WM  Julius D 《Nature》2002,416(6876):52-58
The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.  相似文献   

12.
Atherosclerosis is a chronic inflammatory disease, and is the primary cause of heart disease and stroke in Western countries. Derivatives of cannabinoids such as delta-9-tetrahydrocannabinol (THC) modulate immune functions and therefore have potential for the treatment of inflammatory diseases. We investigated the effects of THC in a murine model of established atherosclerosis. Oral administration of THC (1 mg kg(-1) per day) resulted in significant inhibition of disease progression. This effective dose is lower than the dose usually associated with psychotropic effects of THC. Furthermore, we detected the CB2 receptor (the main cannabinoid receptor expressed on immune cells) in both human and mouse atherosclerotic plaques. Lymphoid cells isolated from THC-treated mice showed diminished proliferation capacity and decreased interferon-gamma secretion. Macrophage chemotaxis, which is a crucial step for the development of atherosclerosis, was also inhibited in vitro by THC. All these effects were completely blocked by a specific CB2 receptor antagonist. Our data demonstrate that oral treatment with a low dose of THC inhibits atherosclerosis progression in the apolipoprotein E knockout mouse model, through pleiotropic immunomodulatory effects on lymphoid and myeloid cells. Thus, THC or cannabinoids with activity at the CB2 receptor may be valuable targets for treating atherosclerosis.  相似文献   

13.
Clapham DE 《Nature》2003,426(6966):517-524
TRP channels are the vanguard of our sensory systems, responding to temperature, touch, pain, osmolarity, pheromones, taste and other stimuli. But their role is much broader than classical sensory transduction. They are an ancient sensory apparatus for the cell, not just the multicellular organism, and they have been adapted to respond to all manner of stimuli, from both within and outside the cell.  相似文献   

14.
报道了1-吡啶甲酰基-4-烯丙基氨基硫脲的合成.以3-溴丙烯和硫氰酸铵制得异硫氰酸烯丙酯(1);将2-吡啶甲酸,3-吡啶甲酸和4-吡啶甲酸酯化;由酯化反应所得(3a-3c)经肼解得吡啶甲酰肼(4a-4c);最后将化合物(1)分别和4a,4b,4c反应,合成了1-吡啶甲酰基-4-烯丙基氨基硫脲类化合物(5a-5c),其结构经红外光谱、氢核磁共振谱、元素分析表征.  相似文献   

15.
The mammalian sensory system is capable of discriminating thermal stimuli ranging from noxious cold to noxious heat. Principal temperature sensors belong to the TRP cation channel family, but the mechanisms underlying the marked temperature sensitivity of opening and closing ('gating') of these channels are unknown. Here we show that temperature sensing is tightly linked to voltage-dependent gating in the cold-sensitive channel TRPM8 and the heat-sensitive channel TRPV1. Both channels are activated upon depolarization, and changes in temperature result in graded shifts of their voltage-dependent activation curves. The chemical agonists menthol (TRPM8) and capsaicin (TRPV1) function as gating modifiers, shifting activation curves towards physiological membrane potentials. Kinetic analysis of gating at different temperatures indicates that temperature sensitivity in TRPM8 and TRPV1 arises from a tenfold difference in the activation energies associated with voltage-dependent opening and closing. Our results suggest a simple unifying principle that explains both cold and heat sensitivity in TRP channels.  相似文献   

16.
TRPV3 is a calcium-permeable temperature-sensitive cation channel   总被引:37,自引:0,他引:37  
Transient receptor potential (TRP) proteins are cation-selective channels that function in processes as diverse as sensation and vasoregulation. Mammalian TRP channels that are gated by heat and capsaicin (>43 degrees C; TRPV1 (ref. 1)), noxious heat (>52 degrees C; TRPV2 (ref. 2)), and cooling (< 22 degrees C; TRPM8 (refs 3, 4)) have been cloned; however, little is known about the molecular determinants of temperature sensing in the range between approximately 22 degrees C and 40 degrees C. Here we have identified a member of the vanilloid channel family, human TRPV3 (hTRPV3) that is expressed in skin, tongue, dorsal root ganglion, trigeminal ganglion, spinal cord and brain. Increasing temperature from 22 degrees C to 40 degrees C in mammalian cells transfected with hTRPV3 elevated intracellular calcium by activating a nonselective cationic conductance. As in published recordings from sensory neurons, the current was steeply dependent on temperature, sensitized with repeated heating, and displayed a marked hysteresis on heating and cooling. On the basis of these properties, we propose that hTRPV3 is thermosensitive in the physiological range of temperatures between TRPM8 and TRPV1.  相似文献   

17.
反相微小乳液合成速溶高分子量聚丙烯酸钠   总被引:1,自引:0,他引:1  
以聚异丁烯丁二酰亚胺、十二烷基硫酸钠为乳化剂,采用反相微小乳液法合成了速溶高分子量聚丙烯酸钠.研究了乳化剂和pH值对聚合体系稳定性的影响以及(NH4)2S2O8—甲基丙烯酸—N、N—二甲氨基乙酯(DMAEMA)—NaHSO3引发剂、单体浓度、烯丙醇对聚合物性能的影响.结果表明,最佳的实验条件:pH值等于10;乳化剂用量为5%(油相);引发剂浓度分别为0.06%、0.04%、0.02%(W单体);烯丙醇的浓度为0.08%(W单体);单体浓度为40%(水相).在最佳实验条件下,合成聚合物分子量超过2×107,且溶解性能优于溶液聚合和反相悬浮聚合所得产品.  相似文献   

18.
Gray JM  Karow DS  Lu H  Chang AJ  Chang JS  Ellis RE  Marletta MA  Bargmann CI 《Nature》2004,430(6997):317-322
Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5-12% oxygen, avoiding higher and lower oxygen levels. 3',5'-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments.  相似文献   

19.
为探究不同脂肪酸组成的植物油对植物肉风味及感官品质的影响,将常用于食品加工且脂肪酸组成差异较大的5种植物油(菜籽油、大豆油、花生油、葵花籽油、棕榈油)添加到植物肉中,采用顶空固相微萃取-气相色谱-质谱联用技术(HS-SPME-GC-MS)对其进行风味分析,结合感官评价和质构分析等方法对5组植物肉进行对比。实验结果表明,5组植物肉的挥发性成分、感观属性、质构特性等存在显著差异。5组样品中共鉴定出79种挥发性组分,其中30种可被嗅闻到,主要包括吡嗪类、呋喃类、醛类、含硫类化合物。2,3,5-三甲基吡嗪、2-戊基呋喃、3-甲硫基丙醛等化合物的嗅闻强度最大。与其他样品相比,添加花生油的样品C和添加菜籽油的样品A中挥发性化合物种类和含量较多,但样品C的香气轮廓中油脂味较为突出,且该组样品的硬度与胶黏性较差,并不适用于植物肉的生产制作。样品A以肉香味为主,其硬度、弹性较大。研究结果表明,含芥酸、油酸较多的菜籽油更适用于植物肉的加工生产,对植物肉的风味、质构等感官品质具有明显增强作用。  相似文献   

20.
利用3-烯丙基溴和硫氰酸钾反应的产物异硫氰酸烯丙酯,再与1,2-环己二胺反应合成了1,1′-(1,2-环己基)-3,3′-烯丙基硫脲,并在石油醚与乙酸乙酯的混合溶液中培养出可用于X-射线衍射的单晶.应用1 H NMR,13 CNMR,IR及x-射线单晶衍射等技术对其结构进行了表征.结果表明该晶体属于正交晶系,空间群为Pcca,晶胞参数为a=21.040(4),b=9.6800(19),c=17.260(3),α=90°,β=90°,γ=90°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号