共查询到20条相似文献,搜索用时 0 毫秒
1.
Arising from F. He & S. P. Hubbell 473, 368-371 (2011). Statistical relationships between habitat area and the number of species observed (species-area relationships, SARs) are sometimes used to assess extinction risks following habitat destruction or loss of climatic suitability. He and Hubbell argue that the numbers of species confined to-rather than observed in-different areas (endemics-area relationships, EARs) should be used instead of SARs, and that SAR-based extinction estimates in the literature are too high. We suggest that He and Hubbell's SAR estimates are biased, that the empirical data they use are not appropriate to calculate extinction risks, and that their statements about extinction risks from climate change do not take into account non-SAR-based estimates or recent observations. Species have already responded to climate change in a manner consistent with high future extinction risks. 相似文献
2.
Harte J Ostling A Green JL Kinzig A 《Nature》2004,430(6995):3 p following 33; discussion following 33
Thomas et al. have carried out a useful analysis of the extinction risk from climate warming. Their overall conclusion, that a large fraction of extant species could be driven to extinction by expected climate trends over the next 50 years, is compelling: it adds to the many other reasons why new energy policies are needed to reduce the pace of warming. 相似文献
3.
4.
5.
6.
Constraints on radiative forcing and future climate change from observations and climate model ensembles 总被引:9,自引:0,他引:9
The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5-95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to -1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range. 相似文献
7.
Emperor penguins and climate change 总被引:15,自引:0,他引:15
Variations in ocean-atmosphere coupling over time in the Southern Ocean have dominant effects on sea-ice extent and ecosystem structure, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice and relying on food resources from the Southern Ocean. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change. 相似文献
8.
9.
Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record 总被引:12,自引:0,他引:12
Today, the El Ni?o/Southern Oscillation (ENSO) system is the primary driver of interannual variability in global climate, but its long-term behaviour is poorly understood. Instrumental observations reveal a shift in 1976 towards warmer and wetter conditions in the tropical Pacific, with widespread climatic and ecological consequences. This shift, unique over the past century, has prompted debate over the influence of increasing atmospheric concentrations of greenhouse gases on ENSO variability. Here we present a 155-year ENSO reconstruction from a central tropical Pacific coral that provides new evidence for long-term changes in the regional mean climate and its variability. A gradual transition in the early twentieth century and the abrupt change in 1976, both towards warmer and wetter conditions, co-occur with changes in variability. In the mid-late nineteenth century, cooler and drier background conditions coincided with prominent decadal variability; in the early twentieth century, shorter-period (approximately 2.9 years) variability intensified. After 1920, variability weakens and becomes focused at interannual timescales; with the shift in 1976, variability with a period of about 4 years becomes prominent. Our results suggest that variability in the tropical Pacific is linked to the region's mean climate, and that changes in both have occurred during periods of natural as well as anthropogenic climate forcing. 相似文献
10.
1 Rise of studies on climate change's effects on biodiversity
Until the 1980s, climate change and biodiversity were studied as two independent disciplines for more than a century. In 1992, the Ecological Society of America's annual report named climate change, biodiversity, and the sustainable ecological system as the three major global environmental issues of the twenty-first century [1]. 相似文献
Until the 1980s, climate change and biodiversity were studied as two independent disciplines for more than a century. In 1992, the Ecological Society of America's annual report named climate change, biodiversity, and the sustainable ecological system as the three major global environmental issues of the twenty-first century [1]. 相似文献
11.
12.
Ecological responses to recent climate change 总被引:128,自引:0,他引:128
Walther GR Post E Convey P Menzel A Parmesan C Beebee TJ Fromentin JM Hoegh-Guldberg O Bairlein F 《Nature》2002,416(6879):389-395
There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible. 相似文献
13.
14.
15.
Linking climate change to lemming cycles 总被引:2,自引:0,他引:2
Kausrud KL Mysterud A Steen H Vik JO Østbye E Cazelles B Framstad E Eikeset AM Mysterud I Solhøy T Stenseth NC 《Nature》2008,456(7218):93-97
The population cycles of rodents at northern latitudes have puzzled people for centuries, and their impact is manifest throughout the alpine ecosystem. Climate change is known to be able to drive animal population dynamics between stable and cyclic phases, and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators. But although predator-rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles, the role of the environment in the modulation of such dynamics is often poorly understood in natural systems. Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings (Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large-scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change. 相似文献
16.
17.
18.
Extinction risk in natural populations depends on stochastic factors that affect individuals, and is estimated by incorporating such factors into stochastic models. Stochasticity can be divided into four categories, which include the probabilistic nature of birth and death at the level of individuals (demographic stochasticity), variation in population-level birth and death rates among times or locations (environmental stochasticity), the sex of individuals and variation in vital rates among individuals within a population (demographic heterogeneity). Mechanistic stochastic models that include all of these factors have not previously been developed to examine their combined effects on extinction risk. Here we derive a family of stochastic Ricker models using different combinations of all these stochastic factors, and show that extinction risk depends strongly on the combination of factors that contribute to stochasticity. Furthermore, we show that only with the full stochastic model can the relative importance of environmental and demographic variability, and therefore extinction risk, be correctly determined. Using the full model, we find that demographic sources of stochasticity are the prominent cause of variability in a laboratory population of Tribolium castaneum (red flour beetle), whereas using only the standard simpler models would lead to the erroneous conclusion that environmental variability dominates. Our results demonstrate that current estimates of extinction risk for natural populations could be greatly underestimated because variability has been mistakenly attributed to the environment rather than the demographic factors described here that entail much higher extinction risk for the same variability level. 相似文献
19.
应对气候变化是我国发展战略,也是国际社会关注的热点科学问题.巴黎协议是人类应对气候变化的新起点,但如何有效引导公众积极参与应对气候变化,研究公众对气候变化认知是很必要的.本文对比分析多家机构针对我国公众关于气候变化认知的调查结果后发现:我国公众对于气候变化事实的了解较清晰,关注度较高,对政府的信任度、依赖度较高,个人应对气候变化的意愿高,但对于气候变化到底是什么只有模糊认识,对气候变化原因和科学机制认识不足.基于以上分析,我们认为未来我国气候变化公众认知研究应着重两方面:一是组织多学科的较大规模的公众气候变化认知综合调查,以获取更充分更全面的数据;二是构建高效的气候变化科学知识传播体系,切实解决气候变化科学认知和公众认知的一致性. 相似文献
20.