首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty - nine Utah streams were sampled for cutthroat trout. Of these, 31 contain cutthroat or cutthroat / rainbow hybrid populations. By using starch gel electrophoresis, these populations were segregated into three groups. One group consisted predominately of fish from the Sevier River (of the Bonneville Basin) and Colorado drainages. A second was primarily populations from the Bear River Drainage (Bonneville Basin) as well as some scattered populations along the Wasatch Front (Bonneville Basin). The third consisted of Wasatch Front populations and populations that have hybridized with rainbow trout. Since different subspecies of cutthroat trout are native to the Colorado and Bonneville drainages, one would expect the populations from within the Bonneville Basin to be more similar to one another and less similar to the Colorado River populations. That this did not occur raises questions concerning the evolutionary relationships of the subspecies and the populations. It is clear that at least a northern (Bear River) and southern (Sevier River) form of the Bonneville cutthroat exists. The Wasatch Front may represent an intermediate zone where these two forms intergrade.      相似文献   

2.
Nonnative brook trout ( Salvelinus fontinalis ) have been implicated in declines of stream-living Lahontan cutthroat trout ( Oncorhynchus clarki henshawi ), a threatened trout endemic to the Lahontan Basin of northeastern California, southeastern Oregon, and northern Nevada. Brook trout may displace Lahontan cutthroat trout through 2 mechanisms: interspecific predation and competition for food. To evaluate the evidence for these alternatives, we examined stomach contents of 30 trout of each species captured in the North Fork Humboldt River, northeastern Nevada, to compare number, size, and taxonomic composition of prey. Taxonomic dietary overlap was high (81.4%) between brook and Lahontan cutthroat trout. Both species were nonselective in their feeding habits. Lahontan cutthroat trout consumed over 2.5 times as many prey on average, but brook trout consumed significantly larger prey. No trout of either species occurred in fish diets. Only a single fish, a Paiute sculpin ( Cottus beldingi ), was found in stomachs, and the majority (>90%) of prey consisted of insect taxa. Size and number of prey consumed were positively related to fish size for Lahontan cutthroat trout, but not for brook trout. These results do not provide compelling evidence to suggest feeding by Lahontan cutthroat trout is limited by presence of large numbers of brook trout in the North Fork Humboldt River. However, fundamental differences in each species utilization of food in this system indicate that a better understanding of observed differences may help to explain the variable success of brook trout invasions across stream habitats in the Lahontan Basin and their potential effects on Lahontan cutthroat trout.  相似文献   

3.
Inland populations of cutthroat trout have suffered dramatic declines and some subspecies are considered threatened or endangered. Understanding patterns of variation and factors that influence life history in populations is important for conservation and management. We determined effects of elevation, sex, and genetic introgression (with Yellowstone cutthroat trout, Oncorhynchus clarkii lewisi , and rainbow trout, Oncorhynchus mykiss ) on growth rates of Colorado River cutthroat trout ( Oncorhynchus clarkii pleuriticus ) in the Sheep Creek drainage in the Uinta Mountains of Utah. In this high-elevation system, native trout grew slowly and matured relatively late. Elevation, sex, and genetic introgression all had significant effects on growth rates. Growth rates were lower at higher elevations. Males were slightly larger than females, and cutthroat trout in locations that were more introgressed grew faster than those at nonintrogressed locations. Both abiotic effects and effects of introduced salmonids must be addressed in long-term management programs to ensure the sustainability of native trout populations.  相似文献   

4.
We evaluated the effects of various density treatments on adult fish growth and emigration rates between Bonneville cutthroat trout Oncorhynchus clarki utah and brook trout Salvelinus fontinalis in stream enclosures in Beaver Creek, Idaho. We used 3 density treatments (low, ambient, and high fish densities) to evaluate density-related effects and to ensure a response. Intraspecific ambient-density tests using cutthroat trout only were also performed. Results indicated an absence of cage effects in the stream enclosures and no differences in fish growth between ambient-density stream-enclosure fish and free-range fish. Brook trout outgrew and moved less than cutthroat trout in the stream enclosures, especially as density increased. In all 3 density treatments, brook trout gained more weight than cutthroat trout, with brook trout gaining weight in each density treatment and cutthroat trout losing weight at the highest density. At high densities, cutthroat trout attempted to emigrate more frequently than brook trout in sympatry and allopatry. We observed a negative correlation between growth and emigration for interspecific cutthroat trout, indicating a possible competitive response due to the presence of brook trout. We observed similar responses for weight and emigration in trials of allopatric cutthroat trout, indicating strong intraspecific effects as density increased. While cutthroat trout showed a response to experimental manipulation with brook trout at different densities, there has been long-term coexistence between these species in Beaver Creek. This system presents a unique opportunity to study the mechanisms that lead cutthroat trout to coexist with rather than be replaced by nonnative brook trout.  相似文献   

5.
We studied spawning ecology of cutthroat trout ( Oncorhynchus clarki ) in streams that originate as springs along the Salt River, a Snake River tributary in western Wyoming. We assessed (1) relative numbers of upstream-migrant and resident adults present during the spawning period in spring streams, (2) influence of habitat modification on use of spring streams for spawning, and (3) habitat features used for spawning in spring streams. Four spring streams were studied, 2 with substantial modification to enhance trout habitat and 2 with little or no modification. Modifications consisted primarily of constructing alternating pools and gravel-cobble riffles. Only a small portion of adult fish in spring streams during the spawning period had migrated upstream from the Salt River between March and the middle of June. Larger numbers of adult fish and more redds were observed in the 2 modified streams compared with the 2 streams with little or no modification. Most spawning occurred on constructed riffles with small gravel and over a narrow range of depths and velocities. Cutthroat trout, rainbow trout ( Oncorhynchus mykiss ), and their hybrids were observed in 1 stream with habitat modifications, indicating that measures to halt invasion by rainbow trout, as well as habitat improvement, are needed to preserve this native trout within the Salt River valley.  相似文献   

6.
Field surveys were conducted during 1997 and 1998 documenting the distribution and abundance of Colorado River cutthroat trout ( Oncorhynchus clarki pleuriticus ) in Escalante River tributaries. This documented occurrence of native trout in the Escalante River drainage of southern Utah represents an expansion of the known historic range of this subspecies as reported before the 1990s. We found 5 populations of native trout ranging in biomass from 3.0 to 104.2 kg ha -1 and occupying 13.2 km of stream of 130 km of estimated historic habitat. Current distribution and abundance of Colorado River cutthroat trout were compared to early introductions of nonnative trout stocked for sport fishing purposes. Native cutthroat trout have been displaced by nonnative cutthroat trout ( O. c. bouveri ), rainbow trout ( O. mykiss ), brook trout ( Salvelinus fontinalis ), and brown trout ( Salmo trutta ) except where they were isolated by physical or biological barriers. Displacement may have been more extensive except for the remoteness of the drainage and relatively recent introductions of nonnative trout. These conditions limited the overall amount of the drainage stocked, numbers of nonnative trout stocked, and time over which stocking occurred. Discoveries of native trout populations within the Escalante River drainage have allowed expanded conservation of this subspecies by adding new populations to what was known to exist and by increasing the known natural range of this fish.  相似文献   

7.
Changes in global climate may exacerbate other anthropogenic stressors, accelerating the decline in distribution and abundance of rare species throughout the world. We examined the potential effects of a warming climate on the greenback cutthroat trout ( Oncorhynchus clarki stomias ), a resident salmonid that inhabits headwater streams of the central Rocky Mountains. Greenbacks are outcompeted at lower elevations by nonnative species of trout and currently are restricted to upper-elevation habitats where barriers to upstream migration by nonnatives are or have been established. We used likelihood-based techniques and information theoretics to select models predicting stream temperature changes for 10 streams where greenback cutthroat trout have been translocated. These models showed high variability among responses by different streams, indicating the usefulness of a stream-specific approach. We used these models to project changes in stream temperatures based on 2° C and 4° C warming of average air temperatures. In these warming scenarios, spawning is predicted to begin from 2 to 3.3 weeks earlier than would be expected under baseline conditions. Of the 10 streams used in this assessment, 5 currently have less than a 50% chance of translocation success. Warming increased the probability of translocation success in these 5 streams by 11.2% and 21.8% in the 2 scenarios, respectively. Assuming barriers to upstream migration by nonnative competitors maintain their integrity, we conclude that an overall habitat improvement results because greenbacks have been restricted through competition with nonnatives to suboptimal habitats, which are generally too cold to be highly productive.  相似文献   

8.
Recent discoveries of native cutthroat trout populations in desert mountain ranges on the western fringe of the Bonneville Basin have prompted intensified management efforts by state and federal agencies. Analysis of Snake Valley cutthroat specimens in Trout Creek, Deep Creek Mountain Range, Utah, indicate this is a pure strain of the trout which once inhabited Pleistocene Lake Bonneville and which was thought to be extinct in Utah. The Snake Valley cutthroat is similar to Salmo clarki utah of the eastern Bonneville Basin; however, electrophoretic and morphomeristic analysis show unique genetic differences brought about by long - term isolation (8,000 years) from the remainder of the Bonneville Basin cutthroat. This cutthroat is a common ancestor to several other limited cutthroat populations within the basin in Nevada. In May 1977 the BLM withdrew from mineral entry about 27,000 acres within the Deep Creek Mountains for protection of this salmonid cutthroat and other unique resources on the range. Results of 1977 stream surveys on the Pilot Peak Mountain Range, Utah, indicate the presence of the threatened Lahontan cutthroat, Salmo clarki henshawi, in one isolated stream.  相似文献   

9.
We used creel surveys to evaluate how a change from a 6-mon to a year-round fishing season affected the sport fish harvest in East Canyon Reservoir (Utah), a 277-ha mesoeutrophic system. Under the year-round season, fishing effort was 840 angler-h . ha -1. yr -1 , and 360 trout ha -1 were captured. Catch rates were proportional to estimated trout densities in the reservoir, ranging from 1.06 during the winter ice fishery, to 0.18 fish angler -1. h -1 in July. Ninety-nine percent of fish harvested were rainbow trout ( Oncorhynchus myskiss ). Thirty-two percent of the 300,000 75-mm fingerling trout stocked annually were captured by anglers within 2.5 yr, but return rates varied with the strain and/or size of trout stocked. Annual fish yield was 102 kg/ha, among the highest yet reported for a temperate zone, lacustrine system. Extending fishing from a 6-mon season to year-round increased the number of fish captured and provided almost twice as many hours of recreational fishing in the reservoir. The harvest period was changed from traditional spring-summer months to primarily a winter-spring fishery because relatively few trout survived for more than 6 mon after reaching harvestable size. Although salmonid production in East Canyon Reservoir is very high, the fishery is in a precarious state because high primary productivity driven, in part, by cultural cutrophication, makes water quality suboptimal during midsummer.  相似文献   

10.
The fluctuating characteristics (numbers, biomass, condition, and young-adult ratios) of the Lahontan (Humboldt) cutthroat trout population in Chimney Creek, Nevada, are discussed in relationship to the unpredictable and unstable habitat in which the population occurs. One possible means of adapting to environmental capriciousness, staggered spawning, occurred during 1982, and clues as to the cause of this unusual event are sought by examining the runoff hydrographs of a nearby watershed for 1981 through 1984. The management values of the environmental tolerance of these native trout with respect to restoring viable trout fisheries in degraded Great Basin streams are also considered.  相似文献   

11.
The Bonneville cutthroat trout ( Oncorhynchus clarki utah ; BCT) was once abundant throughout the Bonneville Basin. In southwestern Utah, however, only 3 local populations of the subspecies were known to exist in 1977, when conservation efforts to protect and replicate them began. By 1995 remnant populations were known in 6 streams, and replicate populations had been established in an additional 16. Populations of BCT in southwestern Utah streams were survey by electrofishing in 1994 and 1995 to describe the subspecies' status. Estimated densities of age-1 and older BCT ranged from 118 to 546 fish per km. Biomass estimates ranged from 8 to 64 kg per ha. Several age groups of BCT were collected at most locations. Six populations were classified as self-sustaining, 9 as expanding through natural recruitment, 6 as new, and 1 as hybridized. Overall status of BCT in southwestern Utah has improved since 1977, but conservation measures must continue to maintain a positive trend.  相似文献   

12.
The mean size of food and amount of food consumed by cutthroat trout from Palisades Creek in southeastern Idaho increased with trout length. Number of organisms of terrestrial origin, number of aquatic larvae, number of ants, and number of berries from redstem dogwood were related to trout length. The size range and number of taxa consumed increased with trout size, indicating that as trout get larger, they broaden their feeding menu. The minimum size of food consumed was relatively constant for all trout, but larger trout appeared to feed more from the stream bottom. Trout may have a minimum length of food, below which items cannot be detected as food. Other possible factors affecting the feeding of cutthroat trout are mentioned.      相似文献   

13.
We determined variability in counts of meristic features (pyloric caecae, vertebrae, pelvic fin rays, gillrakers, basibranchial teeth, scales above the lateral line, and scales in the lateral series) of Yellowstone cutthroat trout ( Oncorhynchus clarki bouvieri ) by 3 independent readers, by the same reader on 3 different occasions, and among fish from 12 sampling sites within a 650-km 2 watershed. Genetic purity of the cutthroat trout was determined by electrophoretic analysis. Significant differences in meristic counts were observed among 3 readers and among sampling sites, but not among 3 occasions by a single reader. Scale counts were within the reported range for Yellowstone cutthroat trout, but counts of other structures (pyloric caecae, gillrakers, vertebrae) were as similar to rainbow trout as to Yellowstone cutthroat trout. Meristic counts identified the fish as cutthroat trout; however, variation among readers and sampling sites, as well as within the species, limits their use when identifying genetically pure cutthroat trout or assessing possible integration with rainbow trout.  相似文献   

14.
Thirty-one stonefly species representing eight families were collected during the March 1987 to May 1990 study period. Genera represented by more than one species included Capnia, Utacapnia, Taenionema, Suwallia, Triznaka, Isogenoides, and Isoperla . Peak species richness was recorded on or near the summer solstice in 1988 and 1989. Climatic differences between years were reflected in nymphal development and emergence phenology of most species. New or important corroborative life history data are presented for 11 stonefly species of this assemblage. The hyporheic nymphal development of most cholroperlid species limited the number of early instars sampled and our capacity to interpret voltinism. Limited nymphal data suggested a univoltine-slow cycle for Plumiperla diversa (Frison). Adults of Suwallia pallidula (Banks) and S. wardi (Banks) were present for an extended summer period, but the bulk of their respective emergence times was temporally separated. Isogenoides zionensis Hanson, Pteronarcella badia (Hagen), and Pteronarcys californica Newport were all shown for the first time to have a 9-10 mo egg diapauses, and all three species have a semivoltine life cycle. Skwala Americana (Klápalek) and Isoperla fulva Claassen were further confirmed to have univoltine-slow cycles. Univoltine-fast and univoltine-slow life cycles are reported for the first time in I. phalerata and I. quinquepunctata , respectively. Regression analysis revealed that six of the eight abunduant species had extended emergence patterns (slopes of < 5%/d), while only two had synchronous patterns. Warmer spring and summer temperatures in 1989 increased the slopes for five of the eight species studied, but did not change their synchrony designation. Nine of 11 abundant species advanced their median emergence date in 1989 over 1988. This and the higher slope values are consistent with a hurried nymphal development and narrower emergence period due to the warmer thermal regime of 1989.  相似文献   

15.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The Pyramid Lake Lahontan cutthroat trout ( Salmo clarki henshawi ) population was sampled on a monthly basis from November 1975 through December 1977. A subsample of 676 trout, stratified by fish size and lake habitat, provided biological data. The entire population is presently derived from hatchery production, stocked at lengths of approximately 75 to 300 mm. Peak annulus formation occurs in March and April, followed by the period of maximum growth. Scale patterns illustrate a variable growing season. Maximum growth in length is in the first three years of life; after that males begin to grow faster than females. Males attained a greater age in our sample; i.e., the oldest male was seven years old compared to six years for females. The Pyramid Lake Lahontan cutthroat trout exhibit nearly isometric growth. The legal sport fishery removed 380 mm); other decimating factors are poorly understood. No evidence of the following diseases or pathogens was found in the Pyramid Lake population, presuming a carrier incidence of 2 percent at the 95 percent confidence level: infectious pancreatic necrosis, infectious hematopoietic necrosis, viral hemorrhagic septicema, bacterial kidney disease, enteric redmouth, furunculosis, whirling disease, blood fluke; however, 7 of 235 (&asymp;3 percent) adults sampled at the Marble Bluff fishway were positive for furunculosis. Small trout feed primarily on zooplankton and benthic invertebrates; cutthroat trout >300 mm are piscivorous, feeding almost exclusively on tui chub ( Gila bicolor ). The spawning migration of Pyramid Lake cutthroat trout to the Marble Bluff egg taking facility in spring 1976 and 1977 peaked in April and May. Females mature at three or four years (352&ndash;484 mm), and males mature at two or three years (299&ndash;445 mm). Mean diameter of mature eggs is 4.51 mm; both ovum size and fecundity are a function of fish size. Fecundity ranges from 1241 to 7963 eggs, with a mean of 3815. Lahontan cutthroat trout comprise  相似文献   

16.
The only remaining self-sustaining native population of lacustrine Lahontan cutthroat trout ( Oncorhynchus clarki henshawi ) not affected by nonnative salmonids is in Summit Lake, Humboldt County, Nevada. Annual spawning runs in 1993 and 1994 were monitored at a fish trap on Mahogany Creek, the only spawning tributary for Summit Lake. Number of spawners was similar in both years, with 1290 upstream migrants observed in 1993 and 1255 in 1994. In 1993, 137 postspawners (10.6% of upstream migrants) returned to the lake, and in 1994, 434 postspawners (34.6% of upstream migrants) returned downstream through the fish trap. Two distinct groups of subadult Lahontan cutthroat trout were observed moving downstream in 1994. The first group passed downstream between 27 April and 29 July and included 1188 fish (average fork length = 90 mm). Between 1 August and 31 October, 1160 fish (average fork length = 42 mm) moved downstream. Size differences of these 2 groups suggest that the 1st group comprised fish that had overwintered in Mahogany Creek, while the 2nd group were probably young-of-the-year.  相似文献   

17.
Benthic macroinvertebrates were collected during the ice-free season (1 July-20 October) over a five-year period from a chain of alpine lakes and intervening streams in the Green Lakes Valley (3,347-3,615 m) in Boulder County, Colorado. A list of taxa was developed for 1981 and 1982, with taxonomic additions for 1983- 1985 and comments on community structure, seasonal and elevational changes in species abundance, and noteworthy occurrences. A total of 111 taxa was collected, of which 84% occurred in streams, 58% being exclusively lotic. Dipterans composed 73-81% of total abundance in streams. The littoral benthic zone of lakes was predominantly trichopterans and dipterans, 44-60% and 24-39%, respectively. Numerically important organisms in various lakes and streams were chironomids, simuliids (particularly Metacnephia ), oligochaetes, and the bivalve Pisidium casertanum . An isolated lake and its outlet stream, with unique characteristics, were the sole locations of Gammarus lacustris (Amphipoda) and Glossiphonia complanata (Hirudinea). Manipulated lowering of a lake along the main drainage exposed abundant and luxuriant colonies of the bryozoan Fredericella sultana . This organism was found on 43% of all rocks sampled, a preponderance heretofore unknown for this, or any, ectoproct in alpine or arctic lakes.  相似文献   

18.
Redband trout Oncorhynchus mykiss gairdneri in the Columbia River Basin of western North America occupy desert and montane streams with variable habitat conditions. In general, desert streams are lower in gradient and elevation, contain less large substrate and more silt substrate, are less shaded by overhead vegetation, and have higher summer water temperature than montane streams. Consequently, we assessed whether the relationships between biotic and abiotic factors and the occurrence and abundance of redband trout in southwestern Idaho differed between desert and montane streams (&#60;25 m mean width). Increased occurrence of redband trout in desert streams was most strongly related to increased stream shading and decreased amounts of silt substrate, followed by increased amounts of cobble/boulder substrate and absence of piscivorous fish (i.e., smallmouth bass Micropterus dolomieui and northern pikeminnow Ptychocheilus oregonensis ). In montane streams, increased occurrence of redband trout was most strongly related to decreased site elevation and increases in cobble/boulder substrate, followed by decreases in stream gradient and width. Furthermore, occurrence of redband trout decreased in desert streams at mean summer (June&ndash;August) water temperature (Temp smr ) >16 &deg;C, whereas for montane streams, occurrence increased at Temp smr >9 &deg;C. Redband trout density in desert streams was most strongly related to higher stream order (i.e., headwater streams), increased stream shading, and increased amounts of cobble/boulder substrate. In montane streams, redband trout density was not well explained by any stream conditions, but stream shading had the strongest positive relationship with density. Redband trout density was negatively related to Temp smr in desert streams, but the relationship was weak for montane streams. That environmental conditions related to the occurrence and abundance of redband trout differ between desert and montane streams is important for fisheries managers who manage these disparate populations occurring in such close proximity to each other.  相似文献   

19.
Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The invasive species Bromus tectorum L. is recognized as one of the most ecologically and economically devastating weeds in the western United States. Although B. tectorum has been studied extensively, few studies have examined its dispersal and spread. We collected data from sites with B. tectorum in and around Rocky Mountain National Park to quantify the relationships between plant cover/density and seed rain and dispersal distance. Results suggest that there is a positive relationship between density within a patch and local seed rain and that B. tectorum exhibits relatively limited short-distance dispersal (where seeds fell in close proximity to plants and no seeds were found to have dispersed more than 0.1 m from the edge of a patch). These data can inform modelers and managers who are attempting to better understand population dynamics and options for controlling this species. La especie invasora Bromus tectorum L. se considera una de las hierbas m&aacute;s devastadoras ecol&oacute;gica y econ&oacute;micamente del oeste de Estados Unidos. Aunque se ha estudiado extensamente, se han hecho pocos estudios sobre su dispersi&oacute;n y distribuci&oacute;n. Colectamos datos de sitios donde crec&iacute;a B. tectorum en Rocky Mountain National Park y sus alrededores para cuantificar la relaci&oacute;n entre la cobertura y la densidad de plantas, la lluvia de semillas y la distancia de dispersi&oacute;n. Los resultados sugieren que hay una relaci&oacute;n positiva entre la densidad dentro de una parcela y la lluvia local de semillas, y que B. tectorum exhibe una distancia de dispersi&oacute;n relativamente corta (las semillas caen cerca de las plantas y no encontramos ninguna semilla que se hubiera dispersado a m&aacute;s de 0.1 m del borde de la parcela). Estos datos pueden informar a los modeladores y administradores en su esfuerzo por comprender la din&aacute;mica poblacional y las opciones de control para esta especie.  相似文献   

20.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Twenty-five cutthroat trout ( Salmo clarki ) and eight longnose suckers ( Catostomus catostomus ) from Yellowstone Lake, Wyoming, were collected and examined for parasites in 1985. Cutthroat trout had at least six different species of parasites that included both protozoans and helminths. The greatest number of parasite species on one fish was nine. Parasites added to the known list for cutthroat trout from Yellowstone Lake, Wyoming, were: Myxosoma sp., Diphyllobothrium ditremum, Diphyllobothrium dendriticum, Diplostomum baeri, and Posthodiplostomum minimum. These data were compared with a previous survey (1971) and a checklist of parasites of cutthroat trout in North America. There are 17 species of parasites and two fungal species reported for cutthroat trout from Yellowstone Lake. Trichophrya catostomi, Diplostomum spathaceum, and Ligula sp. were observed in the small sample of longnose suckers. &nbsp;&nbsp;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号