首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
D E Staunton  M L Dustin  T A Springer 《Nature》1989,339(6219):61-64
The leukocyte adhesion molecule LFA-1 mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation. LFA-1 (CD11a/CD18) is a receptor for intercellular adhesion molecule 1 (ICAM-1, CD54), a surface molecule which is constitutively expressed on some tissues and induced on other in inflammation. Induction of ICAM-1 on epithelial cells, endothelial cells and fibroblasts mediates LFA-1-dependent adhesion of lymphocytes. Several lines of evidence have suggested the existence of a second LFA-1 ligand: homotypic adhesion of one cell line was inhibited by a monoclonal antibody to LFA-1, but not by one to ICAM-1; there exists an LFA-1-dependent, ICAM-1-independent pathway of adhesion to endothelial cells; and also, there are some types of target cells in which LFA-1-dependent T-lymphocyte adhesion and lysis are independent of ICAM-1. We have cloned this second ligand, designated ICAM-2, using a novel method for identifying ligands of adhesion molecules. ICAM-2 is an integral membrane protein with two immunoglobulin-like domains, whereas ICAM-1 has five. Remarkably, ICAM-2 is much more closely related to the two most N-terminal domains of ICAM-1 (34% identity) than either ICAM-1 or ICAM-2 is to other members of the immunoglobulin superfamily, demonstrating the existence of a subfamily of immunoglobulin-like ligands that bind the same integrin receptor.  相似文献   

2.
D Simmons  M W Makgoba  B Seed 《Nature》1988,331(6157):624-627
Antigen-specific cell contacts in the immune system are strengthened by antigen-nonspecific interactions, mediated in part by lymphocyte-function associated (LFA) antigens. The LFA-1 antigen is widely expressed on cells of haematopoietic origin and is a major receptor of T cells, B cells and granulocytes. LFA-1 mediates the leukocyte adhesion reactions underlying cytolytic conjugate formation, helper T-cell interactions, and antibody-dependent killing by natural killer cells and granulocytes. Recently, ICAM-1 (intercellular adhesion molecule-1) has been defined as a ligand for LFA-1. Monoclonal antibodies to ICAM-1 block T lymphocyte adhesion to fibroblasts and endothelial cells and disrupt the interaction between cytotoxic T cells and target cells. In addition, purified ICAM-1 reconstituted into artificial membranes binds LFA-1+ cells. ICAM-1 is found on leukocytes, fibroblasts, epithelial cells and endothelial cells and its expression is regulated by inflammatory cytokines. LFA-1 has been placed in the integrin family of cell surface receptors by virtue of the high sequence similarity between the LFA-1 and integrin beta chains. The adhesion ligands of the integrin family are glycoproteins bearing the Arg-Gly-Asp (RGD) sequence motif, for example, fibronectin, fibrinogen, vitronectin and von Willebrand factor. Here we show that a complementary DNA clone ICAM-1 contains no RGD motifs, but instead is homologous to the neural cell adhesion molecule NCAM.  相似文献   

3.
Cloning and characterization of a new intercellular adhesion molecule ICAM-R.   总被引:27,自引:0,他引:27  
The human intercellular adhesion molecules ICAM-1, ICAM-2 and their counter-receptors, the beta 2 or leukointegrins, mediate a variety of homotypic and heterotypic leukocyte and endothelial cell-cell adhesions central to immunocompetence. It has been found that cell-cell adhesion which is dependent on expression of the leukocyte function-associated antigen LFA-1 is not always blocked completely by antibodies raised against ICAM-1 and ICAM-2. Other leukointegrin ligands therefore probably exist, such as a glycoprotein of M(r) 124K that binds LFA-1 and has been designated ICAM-3 on the basis of this function. We have molecularly cloned a new member of the ICAM family, ICAM-R, which is related to ICAM-1 and ICAM-2. The complementary DNA encoding ICAM-R is 1,781 base pairs long and the protein has five extracellular immunoglobulin-family type domains. The mature cell-surface form of the ICAM-R protein has an M(r) which varies from 116 to 140K in a cell type-specific fashion. Overall identities in protein sequence with ICAM-1 and ICAM-2 are 48% and 31% respectively, with the degree of similarity varying between individual domains. The high level of expression of ICAM-R on resting leukocytes of all lineages and its lack of expression on either resting or cytokine-activated endothelial cells indicates a pattern of expression distinct from ICAM-1 and ICAM-2. In common with ICAM-1 and ICAM-2, ICAM-R is a ligand for the beta 2-integrin CD11a/LFA-1 (CD18).  相似文献   

4.
ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells   总被引:60,自引:0,他引:60  
Cell-cell adhesion is essential for many immunological functions. The LFA-1 molecule, a member of a superfamily of adhesion molecules, participates in adhesion which is critical to the function of each of the three major subsets of leukocytes: lymphocytes, monocytes and granulocytes. Putative LFA-1 ligands have been identified functionally in different laboratories using three different monoclonal antibodies that inhibit LFA-1-mediated leukocyte adhesion in particular model systems; however, there may be more than one LFA-1 ligand. We have directly compared the three relevant monoclonal antibodies, and show that each binds to the same molecule, intercellular-adhesion molecule-1 (ICAM-1). Most important, B, T and myeloid cells adhere specifically to purified ICAM-1-coated surfaces; such adhesion has distinctive requirements for Mg2+ and Ca2+. This constitutes biochemical evidence that ICAM-1 functions as a ligand for LFA-1-dependent adhesion by a variety of leukocytes.  相似文献   

5.
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimer composed of an alpha and beta chain that is expressed on the surface of most leukocytes and is an essential molecule for adhesion reactions between cells participating in the immune response. A putative ligand for LFA-1 is the intercellular adhesion molecule ICAM-1 (refs 3-5). Leukocyte adhesion abnormality is found in patients with LFA-1 deficiency. It is not clear whether binding of ligand to the LFA-1 molecule merely spatially orientates cells towards each other or can also induce signals that regulate cell activation and differentiation. We have recently developed a T-cell proliferation assay which uses immobilized anti-CD3 monoclonal antibodies as stimulant and is independent of LFA-1-mediated cellular adhesion. As there is no interference by anti-LFA-1 monoclonal antibodies with the adhesion-dependent activation steps, this T-cell activation system allows us to investigate whether transmembrane signals are induced by binding of ligand to LFA-1 on T cells. Our data indicate that binding of ligand to LFA-1 results in the transduction of regulatory signal across the plasma membrane, rather like other molecules (CD2, CD4, CD8) (refs 8-11) with signal-modifying properties involved in the adhesion of T cells to target/stimulator cells. Indeed, adhesion molecules might generally be important in signal transduction, even in cells not belonging to the immune system.  相似文献   

6.
D M Altmann  N Hogg  J Trowsdale  D Wilkinson 《Nature》1989,338(6215):512-514
The initiation of a specific immune response is believed to require not only activation through antigen-specific receptors on T cells and B cells but also antigen-independent interactions between accessory molecules. One such molecule is LFA-1, which enhances the avidity of interactions between T cells and antigen-presenting cells, and is possibly involved in signal transduction across the T-cell membrane. Intercellular adhesion molecule-1 (ICAM-1), a surface glycoprotein of relative molecular mass (Mr) 80,000-110,000, has been defined as a ligand for LFA-1, and has been shown to participate in the interaction between T cells and monocytes. The determination of the precise contribution of such accessory molecules to antigen presentation, however, is complicated by the need to analyse against a background of multiple molecular interactions. We have investigated the role of LFA-1/ICAM-1 interactions in antigen presentation directly by quantifying the contribution of ICAM-1 expression to T-cell stimulation using L-cell transfectants that co-express ICAM-1 and HLA-DR. In the case of transfectants expressing modest levels of HLA-DR, co-expression of ICAM-1 is critical for effective HLA class II-restricted and allospecific T-cell activation, pointing to an important role for ICAM-1 in the induction of T-cell responses.  相似文献   

7.
Rhinoviruses belong to the picornavirus family and cause about 50% of common colds. Most rhinoviruses and some coxsackie viruses share a common receptor on human cells. The glycoprotein intercellular adhesion molecule-1 (ICAM-1) has recently been identified as the cellular receptor for the subgroup of rhinoviruses known as the major groups. ICAM-1 is a member of the immunoglobulin supergene family and is a ligand for lymphocyte function-associated antigen-1 (LFA-1); these ICAM-1/LFA-1 interactions are critical to many cell adhesion processes involved in the immunological response. Because anti-ICAM-1 antibodies can block binding of major-group rhinoviruses to cells, we considered that antagonism of virus-receptor interaction might be a way of preventing rhinovirus infection. We have constructed and purified a soluble form of the ICAM-1 molecule, which is normally membrane-bound, and demonstrated that it is a potent and specific inhibitor of rhinovirus infection.  相似文献   

8.
T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1   总被引:176,自引:0,他引:176  
M L Dustin  T A Springer 《Nature》1989,341(6243):619-624
Effective interaction between T cells and their targets requires that recognition of specific antigen be coordinated with increased cell-cell adhesion. We show that antigen-receptor cross-linking increases the strength of the adhesion mechanism between lymphocyte function-associated molecule-1 (LFA-1) and intercellular adhesion molecules (ICAMs), with intracellular signals transmitted from the T-cell antigen receptor to the LFA-1 adhesion molecule. The increase in avidity is rapid and transient, providing a dynamic mechanism for antigen-specific regulation of lymphocyte adhesion and de-adhesion.  相似文献   

9.
Structure of domain 1 of rat T lymphocyte CD2 antigen.   总被引:11,自引:0,他引:11  
The CD2 antigen is largely restricted to cells of the T-lymphocyte lineage and has been established as an important adhesion molecule in interactions between human T lymphocytes and accessory cells. In the adhesion reaction, CD2 on T cells binds to LFA-3 on other cells, with binding through domain 1 of CD2. CD2 can also be a target for the delivery of mitogenic signals to T lymphocytes cultured with combinations of anti-CD2 antibodies. Two predictions that are contradictory have been made for the structure of CD2 domain 1. One suggests an immunoglobulin (Ig) fold, on the basis of sequence patterns conserved in the Ig-superfamily (IgSF), whilst the other proposes a pattern of alternating alpha-helices and beta-strands, on the basis of secondary structure predictions. Thus CD2 domain 1 is an important test case for the validity of IgSF assignments based on sequence patterns. We report here the expression of domain 1 of rat CD2 in an Escherichia coli expression system and have determined a low-resolution solution structure by NMR spectroscopy.  相似文献   

10.
Cell-cell adhesion is essential for many immunological functions, including interaction of cytotoxic T lymphocytes (CTLs) with their targets. We have explored CTL-target interactions using well-characterized cloned human CTLs. Conjugate formation between these CTLs and many antigen-negative targets is almost as efficient as with specific target cells, but does not lead to target-cell lysis. Thus, on specific target cells, adhesion by antigen-independent pathways may occur concurrently with or precede antigen recognition. The molecules LFA-1, CD2 (T11, LFA-2) and LFA-3 have been shown to be involved in human CTL conjugation with and lysis of specific target cells. Here we describe monoclonal antibody inhibition studies using individual monoclonal antibodies and mixes which demonstrate (1) that LFA-1, CD2 and LFA-3 are involved in antigen-independent conjugate formation; and (2) suggest that CD2 and LFA-3 are involved in one pathway and LFA-1 in another. We confirmed the existence of distinct pathways by the demonstration that LFA-1-dependent adhesion requires divalent cations and is temperature-sensitive whereas CD2- and LFA-3-dependent adhesion does not require divalent cations and is temperature-insensitive. Together with previous data, our studies suggest that CD2 on the effector interacts with LFA-3 as its ligand on targets.  相似文献   

11.
M Moos  R Tacke  H Scherer  D Teplow  K Früh  M Schachner 《Nature》1988,334(6184):701-703
Diverse glycoproteins of cell surfaces and extracellular matrices operationally termed 'adhesion molecules' are important in the specification of cell interactions during development, maintenance and regeneration of the nervous system. These adhesion molecules have distinct functions involving different cells at different developmental stages, but may cooperate when expressed together. Families of adhesion molecules which share common carbohydrate domains do exist, despite the structural and functional diversity of these glycoproteins. These include the Ca2+-independent neural adhesion molecules: N-CAM, myelin associated glycoprotein (MAG) and L1. L1 is involved in neuron-neuron adhesion, neurite fasciculation, outgrowth of neurites, cerebellar granule cell migration, neurite outgrowth on Schwann cells and interactions among epithelial cells of intestinal crypts. We show here that in addition to sharing carbohydrate epitopes with N-CAM and MAG, L1 is also a member of the immunoglobulin superfamily. It contains six C2 domains and also shares three type III domains with the extracellular matrix adhesion molecule fibronectin.  相似文献   

12.
B Seed 《Nature》1987,329(6142):840-842
Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor.  相似文献   

13.
CD2-mediated adhesion facilitates T lymphocyte antigen recognition function   总被引:25,自引:0,他引:25  
The CD2 T lymphocyte-surface glycoprotein serves to mediate adhesion between T lymphocytes and their cognate cellular partners which express the specific ligand LFA-3. In addition, CD2 by itself or in conjunction with T-cell receptor stimulation, transduces signals resulting in T-lymphocyte activation. One or both of these functions seems to be physiologically important, given that certain anti-CD2 monoclonal antibodies block T-cell activation and that antigen-responsive memory T cells express a high level of CD2 relative to virgin T cells, which are largely antigen-unresponsive. Nevertheless, the contribution of the individual CD2 functions in T-cell responses has not been independently examined. To this end, human CD2 complementary DNAs encoding an intact LFA-3-binding adhesion domain, but lacking a functional cytoplasmic signal transduction element (CD2trans-), were introduced into an ovalbumin-specific, I-Ad restricted murine T-cell hybridoma. The antigen-specific response of T hybridoma cells expressing human CD2trans- protein was enhanced up to 400% when the human LFA-3 ligand was introduced into the I-Ad expressing murine antigen-presenting cells. In contrast, no augmentation was observed if human LFA-3 was absent or expressed on a third-party cell lacking the I-Ad restriction element. These results directly demonstrate the functional significance of adhesion events mediated between CD2 on the antigen-responsive T lymphocyte and LFA-3 on the presenting cell in optimizing antigen-specific T-cell activation.  相似文献   

14.
A Peterson  B Seed 《Nature》1987,329(6142):842-846
The human T cell erythrocyte receptor (CD2 antigen) allows thymocytes and mature T cells to adhere to thymic epithelium and target cells through a cell surface protein, LFA-3 (refs 1-6). Monoclonal antibodies recognizing CD2 can either block adhesion or, in certain combinations, induce an antigen-independent T cell activation. We have identified the binding sites for 16 monoclonal antibodies against CD2 by a rapid and generally applicable mutational analysis. The binding sites fall in three discrete regions: antibodies that participate in activation and block erythrocyte adhesion bind to the first region; antibodies that block adhesion bind to the second region; and antibodies that participate in activation but do not block adhesion bind to the third region. A large number of mutations selected for loss of antibody reactivity in the first two regions also weaken the CD2-LFA-3 interaction. Good agreement was observed between mutational lesions blocking LFA-3 binding and lesions blocking binding by activating antibodies, which supports the view that such antibodies induce T cell activation by mimicking the effect of LFA-3 binding. CD2 sequences that participate in LFA-3 binding correspond to immunoglobulin variable region hypervariable sequences when the homologous domains are aligned.  相似文献   

15.
The lymphocyte function-associated molecule LFA-1 (CD11a/CD18) plays a key part in lymphocyte adhesion. Lymphocytes do not adhere spontaneously; activation of protein kinase C (PKC) by phorbol esters, however, gives rise to strong LFA-1-dependent adhesion, indicating that activation of LFA-1 is required to induce cell adhesion. We have now investigated whether the functionally important CD2 and CD3 surface structures on T lymphocytes are involved in the activation of LFA-1. The stimulation of these molecules, which causes activation of PKC, strongly promoted LFA-1-dependent adhesion. Furthermore, we demonstrate by using cells from an LFA-1-deficient patient that this enhanced lymphocyte adhesion is caused by activation of the LFA-1 molecule and not by activation of its ligands. LFA-1 was persistently activated by triggering through CD2 but only transiently by triggering through CD3. We postulate that CD2 and CD3 can differentially regulate the affinity of LFA-1 for its ligands by modulating its molecular conformation through PKC-dependent mechanisms.  相似文献   

16.
Glial cells express N-CAM/D2-CAM-like polypeptides in vitro   总被引:6,自引:0,他引:6  
The joining together of neurites to form fascicles and the growth of axons along glial surfaces during early development suggest that neurone-neurone and neurone-glial adhesion interactions are of considerable importance for defining nerve tracts. In vitro studies have indicated that adhesion between neurones involves a glycoprotein that has been independently studied under the names of N-CAM (for neural cell adhesion molecule), D2-CAM and BSP-2 (refs 10, 11). As N-CAM/D2-CAM appears to be a homophilic ligand that binds to N-CAM/D2-CAM polypeptide on adjacent cells, this glycoprotein is potentially important in adhesion interactions between any two N-CAM/D2-CAM-expressing cells. While it has been suggested that neurone-glial adhesion involves molecules other than N-CAM/D2-CAM, it is known that N-CAM/D2-CAM antigenic determinants are expressed by glial cells in vivo and that injection of anti-N-CAM antibodies into the eye-cup of chick embryos disrupts normal patterns of neuritic apposition to glial endfeet in the developing optic stalk. Do the molecules expressed by glia share restricted antigenic determinants, or binding domains, with N-CAM/D2-CAM, or are N-CAM/D2-CAM polypeptides expressed by glia? Here we present immunocytochemical evidence which suggests that all classes of macroglia express N-CAM/D2-CAM antigenic determinants on their surfaces and immunochemical analyses which indicate that the molecules expressed by purified astrocytes are closely similar, or identical, to at least some forms of N-CAM/D2-CAM obtained from whole brain or purified neurones. However, our results also suggest that different N-CAM/D2-CAM polypeptides may be separately expressed by neurones and astrocytes.  相似文献   

17.
The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3   总被引:15,自引:0,他引:15  
CD2 (known also as T11 (ref. 1), LFA-2 (ref. 2) and the erythrocyte rosette receptor (ref. 3] is a functionally important T lymphocyte surface glycoprotein of relative molecular mass 50,000 to 58,000 (Mr 50-58 K) which appears early in thymocyte ontogeny and is present on all mature T cells. Monoclonal antibodies to CD2 inhibit cytotoxic T-lymphocyte (CTL)-mediated killing by binding to the T lymphocyte and blocking adhesion to the target cell. Such antibodies also inhibit T helper cell responses including antigen-stimulated proliferation, interleukin-2 (IL-2) secretion, and IL-2 receptor expression. Certain combinations of monoclonal antibodies to CD2 epitopes trigger proliferation of peripheral blood T lymphocytes, cytotoxic effector function and expression of IL-2 receptors by thymocytes, resulting in thymocyte proliferation in the presence of exogenous IL-2 (ref. 11). These findings suggest that CD2 can function in signalling as well as being an adhesion molecule. To understand the role of CD2 in T-cell adhesion and activation, it is essential to define its natural ligand. Our previous observation that purified CD2 inhibits rosetting of T lymphocytes with sheep erythrocytes and can be absorbed by sheep erythrocytes suggested it also might bind with detectable affinity to human cells. We now report that CD2 binds to a cell-surface antigen known as lymphocyte function-associated antigen-3 (LFA-3) with high affinity, and can mediate adhesion of lymphoid cells via interaction with LFA-3.  相似文献   

18.
T-cell accessory molecules, particularly CD4 and CD8, seem to be involved in the control of T-cell activation by antigen. Precisely how such molecules operate is not fully understood, but evidence to date suggests a dual role, as receptors binding ligands on stimulator cells and by direct or indirect involvement in intracellular signalling events. In mouse, truncated 'tailless' CD8 molecules occur naturally (CD8 alpha' polypeptides) and although they are expressed on the surface of thymocytes, they are not expressed on the surface of mature T cells. In this study, we show that truncated CD8 molecules are impaired in their ability to interact with the protein tyrosine kinase, p56lck, and have decreased ability to restore immune responsiveness in vitro. Our data support a dual function for CD8 molecules correlated with expression of external domains and cytoplasmic domains, respectively. Both functions appear to be critical for a competent immune system in vivo.  相似文献   

19.
The induction of an ensemble of adhesion molecules on endothelial cells by inflammatory cytokines is likely to be crucial to the differential migration of T-lymphocyte subsets into inflammatory sites. Two molecular pathways involving the VLA-4 and LFA-1 integrins are known to mediate T-cell adhesion to activated endothelium. Here we show that a third pathway involving the rapidly inducible endothelial cell-surface adhesion molecule ELAM-1 contributes to the binding of resting CD4+ T cells to IL-1-induced human endothelial cells. All three pathways contribute to the greater adhesion to endothelium of memory T cells than naive T cells. There are two unique features of T-cell adhesion to purified ELAM-1: first, ELAM-1 exclusively mediates adhesion of memory T cells; second, memory T-cell binding to ELAM-1 is independent of acute activation events that regulate integrin-mediated adhesion. Thus, ELAM-1 may be of primary importance in the initial attachment of memory T cells to inflamed endothelium in vivo and to the preferential migration of memory T cells into tissue and inflammatory sites.  相似文献   

20.
Gamma-interferon is one of several direct B cell-maturing lymphokines   总被引:1,自引:0,他引:1  
Two classes of molecules often released after the interaction of T lymphocytes, macrophages and antigen are B-cell maturation factors (BMF)1-3 and immune (gamma) interferon (IFN-gamma)4-7. BMFs directly induce the maturation of resting B lymphocytes to the state of active immunoglobulin secretion, while IFN-gamma is defined by the reduction of viral infectivity in vitro. However, interferons have been shown to have a variety of effects and they have also been reported both to increase and decrease B-cell differentiation in intact animals and complex cellular mixtures in vitro. Here we show that murine IFN-gamma produced by recombinant DNA technology shows similar biological effects to BMFs from two other sources. All three preparations induce immunoglobulin secretion by both normal resting murine splenic B cells and the comparable B-cell tumour line WEHI-279.1 (refs 1, 3). IFN-gamma and the other two BMFs are not identical, however, as anti-IFN-gamma antibodies block the effects on B cells of IFN-gamma, but not those of the other two lymphokines. IFN-gamma may be one of several molecules with a direct role in driving the maturation of resting B cells to active immunoglobulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号