首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
考虑哈密顿型椭圆方程组{-△u+V(x)u=Hv(x,u,v) x∈RN -△v+V(x)v=Hu(x,u,v) x∈RN u(x)→0,v(x)→0 | x |→∞其中z=(u,v):RN→R×R,N≥3.假设位势V是非周期的,0(∈)σ(-△+V);H(x,z)关于x是非周期的,关于z=(u,v)是渐近二次的.利用变分方法讨论了解的存在性与多重性.  相似文献   

2.
考虑下面的带位势耦合薜定谔方程组,{-Δu+V1(x)u=Q11(x)u3+Q12(x)uv2,x∈RN,-Δv+V2(x)v=Q21(x)u2v+Q22(x)v3,x∈RN,其中N=1,2,3,Vi(x)和Qij(x)(1≤i,j≤2)是正的连续函数且满足Q12(x)=Q21(x).我们利用Nehari流形和Ekeland变分原理证明了一个半正基本态解的存在及其性质.  相似文献   

3.
运用能量方法证明了如下非线性Schroedinger方程组Cauchy问题 {iut=Δu+|v|^2u,x∈R^n,t〉0,ivt=Δv+|u|^2v,x∈R^n,t〉0,u(x,0)=φ(x),v(x,0)=ψ(x) 存在有限时间T,使得当t→T^-时‖grad u(t)‖L^2(R^n)+‖grad v(t)‖L^2(R^n)=+∞.  相似文献   

4.
研究了如下奇异半线性反应扩散方程组Cauchy问题:ut-(1/t)Δu=vp t>ε>0,x∈Rnvt-(1/t)Δv=up t>ε>0,x∈Rn(1)limt→εu(t,x)=u0(x)x∈Rnlimt→εv(t,x)=v0(x)x∈Rn(2)其中,p>1,u0(x),v0(x)∈L∞(Rn),u0(x)≥0,v0(x)≥0,且u0(x),v0(x)不恒为零.证明了其非负局部解在有限时间内Blow-up.  相似文献   

5.
运用临界点理论中的Ekeland变分原理研究了非齐次Kirchhoff方程-(1+b∫RN|▽u|2dx)Δu+V(x)u=f(u)+h(x)x∈RN解的存在性,其中V∈C(RN,R)满足infNV(x)≥a1>0,这里a1>0是一个常数,更进一步,对每个M>0,meas({x∈RN:V(x)≤M})<∞,这里meas表示RN中的Lebesgue测度;f∈C(R,R+),f(0)=0,并且f(z)≡0当z<0;limz→0f(z)/z=0,limz→+∞f(z)/z=l<+∞.  相似文献   

6.
讨论了下面问题:{-Δu+qu=2αα+β|u|α-2u|v|β,x∈RN,-Δv+qv=2βα+β|u|α|v|β-2v,x∈RN,u,v∈H1(RN)。应用变分法证明了以上椭圆方程组至少存在一个非平凡的非负解。  相似文献   

7.
证明了三维空间中一类耦合非线性Schroedinger方程组的Cauchy问题 iut+Δu=a|u|^a-1u|v|^β+1,ivt+Δv=b|u|^a+1|v|^β-1v,u(0,x)=u0(x),v(0,x)=v0(x),t>0,x∈R^n,整体解的存在唯一性,并得到了解关于初值的连续依赖性及解具有的较强的衰减估计  相似文献   

8.
研究了一类分数阶p-Laplacian方程(-Δ)_p~su+V(x)|u|~(p-2)u=f(x,u),x∈R~N弱解的存在性问题.其中:p≥2;N≥2;s∈(0,1);V(x)∈C(RN)是变号的势函数;(-Δ)sp是分数阶p-Laplacian算子;非线性项f:RN×R→R是Carathéodory泛函.运用山路引理,建立了该方程非平凡弱解的存在性定理.  相似文献   

9.
研究了带扰动参数的拟线性椭圆方程 -ε2△u-ε2△(u2)u+ε2V(x)u=h(u),x∈RN,N≥3 正解的存在性.其中V(x)为正的连续位势函数.在h(u)及V(x)满足适当的条件下,建立了方程正解的存在性定理.  相似文献   

10.
考虑以下具有变号位势的非周期超二次哈密顿椭圆系统{-△u+b(x)·▽u+V(x)u=H_v(x,u,v),-△v-b(x)·▽u+V(x)v=H_u(x,u,v),x∈R~N u(x),v(x)→0,|x|→∞其中z=(u,v):R~N→R×R,当|z|→∞时,H(x,z)关于z是超二次的,在位势V变号的假设下,利用强不定泛函的临界点理论证明此系统存在一个非平凡解。  相似文献   

11.
在无界区域上考虑了如下具有线性记忆项的半线性耗散波动方程的整体吸引子的维数估计 (utt + ±ut ? k(0)á(x)¢u ?R10 k0(s)á(x)¢u(t ? s)ds + ?f(u) = h(x); (x; t) 2 RN £ R+; u(x; t) = u0(x; t); ut(x; 0) = @tu0(x; 0); x 2 RN; t · 0: 其中N ? 3, ± > 0, 并á(x)?1 =: g(x) 2 LN=2(RN)TL1(RN). 为了克服在无界区域中与微分算子á(x)¢的非紧性有关的困难, 引入了能量空间X0 = D1;2(RN) £ L2 g(RN) £L21(R+;D1;2(RN)). Hausdorff维数维数和分形维数的估计是根据特征方程?á(x)¢u =au; x 2 RN的特征值a 分布的渐近估计得出的.  相似文献   

12.
本文研究了一类双曲微分方程2/t2[u+c(t)u(x,t-τ)]=a0(t)Δu+a1(t)Δu(x,t-ρ)-a∫bq(x,t,ξ)f(u[x,g(t,ξ)])du(ξ)+g(x,t),(x,t)∈Ω×R+≡G,在边界条件下u/N+v(x,t)u=0,(x,t)∈uΩ×R+解的振动性问题,得到c(t)≥1情况下边值问题解的振动条件。  相似文献   

13.
研究了一类拟线性椭圆型方程问题: {div(|Δ↓u|^p-2Δ↓u)+Δ↓u|^p-1=k(x)f(u),x∈R^N u(x)→∞,|x|→∞ 的正解存在性问题,其中P〉1,而非负函数k∈Cloc^0,θ(R^N)(N≥3,0〈θ〈1) ,非负函数f在[0,+∞)为连续、单增的.运用上下解方法和椭圆型方程内估计理论,在适当的条件下证明了该问题全局正爆破解存在性.  相似文献   

14.
证明了若线性椭圆型问题-△u = k(x),u 〉 0, x ∈Ω, u │аΩ = 0存在解v ∈ C^2+α(Ω) ∩ C(Ω ̄),则半线性椭圆型问题-△u = k(x)g(u),u〉0,x∈ Ω, u │аΩ = 0存在解u∈C^2+α(Ω) ∩ C(Ω ̄).这里,Ω是R^N中的有界光滑区域,k∈C^α(Ω)非负、非平凡,g∈C^1((0,∞),(0,∞)),g在(0,∞)有上界且lin s→0+ g(s)=∞.  相似文献   

15.
以平凡解u=0,v=1作为种子解,代入矩阵谱问题Φx=UΦ,U=(-λ+u v~(1/2) v λ-u),Φt=VΦ,V=(V1 V2 V3 -V1),其中V1=-λ2+u2+1/6ux+1/6(lnv)xx+1/8(lnv)x2,V2=vλ+uv-1/2vx,V3=(vλ)~(1/2)+uv~(1/2)+vx/(4v~(1/2)).求出基本解.选取两个基本解φ(λj)=(coshξjβjsinhξj+λj coshξj),ф(λj)=(sinhξjβjcoshξj+λj sinhξj),其中ξj=βj(x+λj t),βj=(λj2+1)~(1/2),(1≤j≤N-1).再利用克莱姆法则和达布变换求出方程的非平凡解,最后又具体给出N=1和N=2两种情形.  相似文献   

16.
主要研究了以下一类非齐次Klein-Gordon-Maxwell方程:-Δu+[m2-(w+Φ)2]u=|u|2*-1+g(x),x∈R3;-ΔΦ+Φu2=-ωu2,x∈R{3解的存在性.在g(x)满足一定的假设条件下,通过变分方法得出系统解的存在性结论.  相似文献   

17.
笔者考虑了一般的Plate方程ut+g(ut)+Δ2u+(β-‖△u‖2)Δu+f(u)=h(x)解的长时间行为,其中β=R.当外力项h仅属于H-2(Ω)时获得了方程解的有界吸收集的存在性;当h∈L2(Ω)时,证明了与方程相关的解半群拥有一紧不变的全局吸引子.  相似文献   

18.
文章主要运用临界点理论和Morse理论,得到一类六阶含参微分方程Dirichlet边值问题解的存在性和多解性结果,考虑的具体问题为:-u^(6)(t)+αu^(4)(t)-βu″(t)+γu(t)=λf(t,u(t)),t∈[0,1],u(0)=u(1)=u″(0)=u″(1)=u^(4)(0)=u^(4)(1)=0,其中f:[0,1]×R→R连续,α,β∈R,γ,λ∈R^+是参数,并满足条件α/π^2+β/π^4+γ/π^6〉-1,-3π^4-2απ^2〈β〈-3γ/π^2,α〉3γ/2π^4-3/2^π2,则当λ在某具体区间内时,上述边值问题有多个解.  相似文献   

19.
一类二阶边值系统的3个正解   总被引:1,自引:1,他引:0  
利用Williamsleggett定理研究Sturm—Liouville二阶边值系统 u″(t)+f(u(t),v(t))=0, v″(t)+g(u(t),v(t))=0, α1u(0)-β1u(0)=0,γ1u(1)+δ1u(1)=0 α2v(0)-β2v(0)=0,γ2v(1)+δ2v(1)=0 得到了至少有3个正解的存在性结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号