首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-linked nephrogenic diabetes insipidus (NDI) is a rare disorder in which the kidney is insensitive to the antidiuretic hormone, vasopressin. It has been proposed that the kidney-specific V2 vasopressin receptor, a G protein-coupled receptor, is defective in this disorder as both the disease and the receptor map to Xq28. We report six unique mutations in the V2 receptor gene of five unrelated NDI patients, with one patient having two mutations. The most severely affected patient has a nonsense mutation which would terminate the protein in transmembrane domain III. Other mutations include three missense mutations, a frameshift and one small in-frame deletion. These results represent one of the first examples of recessive mutations affecting a G protein-coupled receptor.  相似文献   

2.
X-linked hypohidrotic ectodermal dysplasia results in abnormal morphogenesis of teeth, hair and eccrine sweat glands. The gene (ED1) responsible for the disorder has been identified, as well as the analogous X-linked gene (Ta) in the mouse. Autosomal recessive disorders, phenotypically indistinguishable from the X-linked forms, exist in humans and at two separate loci (crinkled, cr, and downless, dl) in mice. Dominant disorders, possibly allelic to the recessive loci, are seen in both species (ED3, Dlslk). A candidate gene has recently been identified at the dl locus that is mutated in both dl and Dlslk mutant alleles. We isolated and characterized its human DL homologue, and identified mutations in three families displaying recessive inheritance and two with dominant inheritance. The disorder does not map to the candidate gene locus in all autosomal recessive families, implying the existence of at least one additional human locus. The putative protein is predicted to have a single transmembrane domain, and shows similarity to two separate domains of the tumour necrosis factor receptor (TNFR) family.  相似文献   

3.
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by early contractures of elbows and Achilles tendons, slowly progressive muscle wasting and weakness, and a cardiomyopathy with conduction blocks which is life-threatening. Two modes of inheritance exist, X-linked (OMIM 310300) and autosomal dominant (EDMD-AD; OMIM 181350). EDMD-AD is clinically identical to the X-linked forms of the disease. Mutations in EMD, the gene encoding emerin, are responsible for the X-linked form. We have mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus. This region contains the lamin A/C gene (LMNA), a candidate gene encoding two proteins of the nuclear lamina, lamins A and C, produced by alternative splicing. We identified four mutations in LMNA that co-segregate with the disease phenotype in the five families: one nonsense mutation and three missense mutations. These results are the first identification of mutations in a component of the nuclear lamina as a cause of inherited muscle disorder. Together with mutations in EMD (refs 5,6), they underscore the potential importance of the nuclear envelope components in the pathogenesis of neuromuscular disorders.  相似文献   

4.
5.
X-linked forms of mental retardation (MR) affect approximately 1 in 600 males and are likely to be highly heterogeneous. They can be categorized into syndromic (MRXS) and nonspecific (MRX) forms. In MRX forms, affected patients have no distinctive clinical or biochemical features. At least five MRX genes have been identified by positional cloning, but each accounts for only 0.5%-1.0% of MRX cases. Here we show that the gene TM4SF2 at Xp11.4 is inactivated by the X breakpoint of an X;2 balanced translocation in a patient with MR. Further investigation led to identification of TM4SF2 mutations in 2 of 33 other MRX families. RNA in situ hybridization showed that TM4SF2 is highly expressed in the central nervous system, including the cerebral cortex and hippocampus. TM4SF2 encodes a member of the tetraspanin family of proteins, which are known to contribute in molecular complexes including beta-1 integrins. We speculate that through this interaction, TM4SF2 might have a role in the control of neurite outgrowth.  相似文献   

6.
Mutations in NR4A2 associated with familial Parkinson disease   总被引:17,自引:0,他引:17  
  相似文献   

7.
Centronuclear myopathies are characterized by muscle weakness and abnormal centralization of nuclei in muscle fibers not secondary to regeneration. The severe neonatal X-linked form (myotubular myopathy) is due to mutations in the phosphoinositide phosphatase myotubularin (MTM1), whereas mutations in dynamin 2 (DNM2) have been found in some autosomal dominant cases. By direct sequencing of functional candidate genes, we identified homozygous mutations in amphiphysin 2 (BIN1) in three families with autosomal recessive inheritance. Two missense mutations affecting the BAR (Bin1/amphiphysin/RVS167) domain disrupt its membrane tubulation properties in transfected cells, and a partial truncation of the C-terminal SH3 domain abrogates the interaction with DNM2 and its recruitment to the membrane tubules. Our results suggest that mutations in BIN1 cause centronuclear myopathy by interfering with remodeling of T tubules and/or endocytic membranes, and that the functional interaction between BIN1 and DNM2 is necessary for normal muscle function and positioning of nuclei.  相似文献   

8.
9.
Clustered attacks of epileptic episodes originating from the frontal lobe during sleep are the main symptoms of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE, MIM 600513). Despite the clinical homogeneity, three forms of ADNFLE have been associated with chromosomes 20 (ENFL1; ref. 1), 15 (ENFL2; ref. 2) and 1 (ENFL3; ref. 3). Mutations of the gene encoding the neuronal nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4 ) have been found in ADNFLE-ENFL1 families, but these mutations account for only a small proportion of ADNFLE cases. The newly identified locus associated with ENFL3 harbours several candidate genes, including CHRNB2 (ref. 8), whose gene product, the beta 2 nicotinic acetylcholine receptor (nAChR) subunit, co-assembles with the alpha 4 nAChR subunit to form the active receptor.  相似文献   

10.
We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.  相似文献   

11.
Choroideremia (CHM) is an X-linked progressive degeneration of the choroid and retina. 12% of unrelated male patients carry deletions of the partially cloned CHM gene. In Finland, there are more than 120 living CHM patients belonging to eight apparently unrelated pedigrees. Molecular deletions involving the CHM gene have been detected in three families. We have screened the remaining five families for point mutations. In one large family a single nucleotide (T) insertion into the donor splice site of exon C leads to two aberrantly spliced mRNAs both producing a premature stop codon. The mutation can be assayed easily by amplification and digestion with Msel. Our findings provide additional evidence for the pathogenetic role of CHM mutations and provide a diagnostic tool for one fifth of the world's known CHM patients.  相似文献   

12.
Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families. However, mutations in MADH4 are only present in a subset of JP cases, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22-23 (maximum lod score of 4.74, straight theta=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine-threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-beta (TGF-beta) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control.  相似文献   

13.
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.  相似文献   

14.
Robinow syndrome is a short-limbed dwarfism characterized by abnormal morphogenesis of the face and external genitalia, and vertebral segmentation. The recessive form of Robinow syndrome (RRS; OMIM 268310), particularly frequent in Turkey, has a high incidence of abnormalities of the vertebral column such as hemivertebrae and rib fusions, which is not seen in the dominant form. Some patients have cardiac malformations or facial clefting. We have mapped a gene for RRS to 9q21-q23 in 11 families. Haplotype sharing was observed between three families from Turkey, which localized the gene to a 4. 9-cM interval. The gene ROR2, which encodes an orphan membrane-bound tyrosine kinase, maps to this region. Heterozygous (presumed gain of function) mutations in ROR2 were previously shown to cause dominant brachydactyly type B (BDB; ref. 7). In contrast, Ror2-/- mice have a short-limbed phenotype that is more reminiscent of the mesomelic shortening observed in RRS. We detected several homozygous ROR2 mutations in our cohort of RRS patients that are located upstream from those previously found in BDB. The ROR2 mutations present in RRS result in premature stop codons and predict nonfunctional proteins.  相似文献   

15.
Familial glucocorticoid deficiency (FGD), or hereditary unresponsiveness to adrenocorticotropin (ACTH; OMIM 202200), is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex, which stimulates glucocorticoid production. Affected individuals are deficient in cortisol and, if untreated, are likely to succumb to hypoglycemia or overwhelming infection in infancy or childhood. Mutations of the ACTH receptor (melanocortin 2 receptor, MC2R) account for approximately 25% of cases of FGD. FGD without mutations of MC2R is called FGD type 2. Using SNP array genotyping, we mapped a locus involved in FGD type 2 to chromosome 21q22.1. We identified mutations in a gene encoding a 19-kDa single-transmembrane domain protein, now known as melanocortin 2 receptor accessory protein (MRAP). We show that MRAP interacts with MC2R and may have a role in the trafficking of MC2R from the endoplasmic reticulum to the cell surface.  相似文献   

16.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

17.
Idiopathic congenital nystagmus is characterized by involuntary, periodic, predominantly horizontal oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 singleton cases of idiopathic congenital nystagmus (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina, suggesting a specific role in the control of eye movement and gaze stability.  相似文献   

18.
Idiopathic generalized epilepsy (IGE) is an inherited neurological disorder affecting about 0.4% of the world's population. Mutations in ten genes causing distinct forms of idiopathic epilepsy have been identified so far, but the genetic basis of many IGE subtypes is still unknown. Here we report a gene associated with the four most common IGE subtypes: childhood and juvenile absence epilepsy (CAE and JAE), juvenile myoclonic epilepsy (JME), and epilepsy with grand mal seizures on awakening (EGMA; ref. 8). We identified three different heterozygous mutations in the chloride-channel gene CLCN2 in three unrelated families with IGE. These mutations result in (i) a premature stop codon (M200fsX231), (ii) an atypical splicing (del74-117) and (iii) a single amino-acid substitution (G715E). All mutations produce functional alterations that provide distinct explanations for their pathogenic phenotypes. M200fsX231 and del74-117 cause a loss of function of ClC-2 channels and are expected to lower the transmembrane chloride gradient essential for GABAergic inhibition. G715E alters voltage-dependent gating, which may cause membrane depolarization and hyperexcitability.  相似文献   

19.
20.
We identified loss-of-function mutations in ATP6V0A2, encoding the a2 subunit of the V-type H+ ATPase, in several families with autosomal recessive cutis laxa type II or wrinkly skin syndrome. The mutations result in abnormal glycosylation of serum proteins (CDG-II) and cause an impairment of Golgi trafficking in fibroblasts from affected individuals. These results indicate that the a2 subunit of the proton pump has an important role in Golgi function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号